Advertisement

Observation of Coexistence of Super-Ionic Conductivity and Metamagnetism in Mn3[NbIV(CN)8]2(4-Aminopyridine)10(4-Aminopyridinium)2 · 12H2O

  • Kenta ImotoEmail author
Chapter
  • 142 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, to obtain new ionic conductive magnetic material using octacyanometalate-based magnet, the incorporation of 4-aminopyridine as organic ligand is performed due to the capability of forming hydrogen bond. The reaction of MnII, [NbIV(CN)8], and 4-aminopyridine yielded yellow crystal formulated as Mn 3 II [NbIV(CN)8]2(4-aminopyridine)10(4-aminopyridinium)2 · 12H2O. This compound possesses non-coordinated pyridinium cation and 1-dimensional infinite hydrogen-bonding networks constructed with ligand water molecules, non-coordinated water molecules, and 4-aminopyridinium cations. Magnetic measurements revealed that the present compound shows metamagnetism with a Neel temperature of 9 K. The impedance measurement showed that the present compound exhibits super-ionic conductivity (>10−4 S cm−1) which is caused by proton conduction based on the Grotthuss mechanism. In the present material, 4-aminopyridinium cation is incorporated into the flexible octacyanidometallate-based magnetic framework and plays an important role in the formation of the hydrogen-bonding network, which leads to the observation of super-ionic conductivity.

Keywords

Ionic conductivity Cyanido-bridged metal assembly Hydrogen bond network Metamagnetism 

References

  1. 1.
    P. Colomban, J. Mol. Struct. 177, 277–308 (1988)CrossRefGoogle Scholar
  2. 2.
    P. Colomban, Proton Conductors (Cambridge University Press, U.K., 1992)CrossRefGoogle Scholar
  3. 3.
    B.C. Steele, A. Heinzel, Nature 414, 345–352 (2001)CrossRefGoogle Scholar
  4. 4.
    K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637–4678 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nat. Mater. 8, 831–836 (2009)CrossRefGoogle Scholar
  6. 6.
    J.A. Hurd, R. Vaidhyanathan, V. Thangadurai, C.I. Ratcliffe, I.L. Moudrakovski, G.K.H. Shimizu, Nat. Chem. 1, 705–710 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 134, 5472–5475 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Ōkawa, A. Shigematsu, M. Sadakiyo, T. Miyagawa, K. Yoneda, M. Ohba, H. Kitagawa, J. Am. Chem. Soc. 131, 13516–13517 (2009)CrossRefGoogle Scholar
  9. 9.
    E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo, H. Liu, B. Dkhil, F. Lloret, K. Nakagawa, H. Tokoro, S. Ohkoshi, M. Verdaguer, J. Am. Chem. Soc. 133, 15328–15331 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Ōkawa, M. Sadakiyo, T. Yamada, M. Maesato, M. Ohba, H. Kitagawa, J. Am. Chem. Soc. 135, 2256–2262 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, H. Tokoro, J. Am. Chem. Soc. 132, 6620–6621 (2010)CrossRefGoogle Scholar
  12. 12.
    G.M. Sheldrick, Acta Crystallogr. A 64, 112–122 (2008)CrossRefGoogle Scholar
  13. 13.
    N.A. Caballero, F.J. Melendez, C. Muñoz-Caro, A. Niño, Biophys. Chem. 124, 155–160 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Nakagawa, K. Imoto, H. Miyahara, S. Ohkoshi, Polyhedron 52, 424–428 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan

Personalised recommendations