Advertisement

Introduction

  • Kenta ImotoEmail author
Chapter
  • 134 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter firstly describes general introduction of molecule-based magnets, explaining advantages of molecule-based magnets compared to metal or metal oxide-based magnets. Secondary, as principal methods to treat magnetic properties, molecular-field theory and Van Vleck’s theory are explained. Next, attractive points of cyanido-bridged metal assemblies, especially octacyanidometalate-based magnets, are described with examples of reported functional cyanido-bridged metal assemblies. Then, as the related functionalities in this thesis, spin-crossover phenomenon, light-induced spin-crossover phenomenon, photo-induced magnetization, and ionic-conductivity are explained. Finally, observation coupling effect between spin-crossover phenomenon and magnetic phase transition and demonstration of ionic conductive magnetic material in octacyanidometalate-based magnets are described as the objectives of this thesis.

Keywords

Molecule-based magnet Photo-induced magnetization Spin-crossover Ionic conductivity Cyanido-bridged metal assemblies 

References

  1. 1.
    O. Kahn, Molecular Magnetism VCH (New York, 1993)Google Scholar
  2. 2.
    M. Verdaguer, Science 272, 698–699 (1996)CrossRefGoogle Scholar
  3. 3.
    K.R. Dunbar, R.A. Heintz, Prog. Inorg. Chem. 45, 283–391 (1997)Google Scholar
  4. 4.
    S. Ohkoshi, K. Hashimoto, J. Photochem. Photobiol. C 5, 203–223 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Tokoro, S. Ohkoshi, Dalton Trans. 40, 6825–6833 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Ohkoshi, H. Tokoro, Acc. Chem. Res. 45, 1749–1758 (2012)CrossRefGoogle Scholar
  7. 7.
    J.S. Miller, A.J. Epstein, Angew. Chem. Int. Ed. 33, 385–415 (1994)CrossRefGoogle Scholar
  8. 8.
    D. Gatteschi, O. Kahn, J. S. Miller, F. Palacio, Magnetic Molecular Materials Kluwer (Dordrecht, 1991)Google Scholar
  9. 9.
    S. Ohkoshi, S. Yorozu, O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Appl. Phys. Lett. 70, 1040–1042 (1997)CrossRefGoogle Scholar
  10. 10.
    Y. Arimoto, S. Ohkoshi, Z.J. Zhong, H. Seino, Y. Mizobe, K. Hashimoto, J. Am. Chem. Soc. 70, 9240–9241 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, J. Am. Chem. Soc. 70, 5320–5321 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, Chem. Mater. 20, 423–428 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Ozaki, H. Tokoro, Y. Hamada, A. Namai, T. Matsuda, S. Kaneko, S. Ohkoshi, Adv. Funct. Mater. 20, 2089–2093 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Sato, S. Ohkoshi, K. Arai, M. Tozawa, K. Hashimoto, J. Am. Chem. Soc. 125, 14590–14595 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Ohkoshi, K. Arai, Y. Sato, K. Hashimoto, Nat. Mater. 3, 857–861 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Tokoro, S. Ohkoshi, T. Matsuda, K. Hashimoto, Inorg. Chem. 43, 5231–5236 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Ohkoshi, T. Matsuda, H. Tokoro, K. Hashimoto, Chem. Mater. 17, 81–84 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Ohkoshi, T. Iyoda, A. Fujishima, K. Hashimoto, Phys. Rev. B 56, 11642–11652 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Ohkoshi, Y. Abe, A. Fujishima, K. Hashimoto, Phys. Rev. Lett. 82, 1285–1288 (1999)CrossRefGoogle Scholar
  20. 20.
    S. Ohkoshi, T. Hozumi, K. Hashimoto, Phys. Rev. B 64, 132404 (2001)CrossRefGoogle Scholar
  21. 21.
    R. Yamada, H. Tokoro, N. Ozaki, S. Ohkoshi, Cryst. Growth Des. 12, 2013–2017 (2012)CrossRefGoogle Scholar
  22. 22.
    J.H. Van Vleck, The theory of electric and magnetic susceptibilities (Oxford University Press, London, 1932)Google Scholar
  23. 23.
    B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications (WILEY-VCH, Weinheim, 1999)Google Scholar
  24. 24.
    M.E. Lines, Phys. Rev. 131, 546–555 (1963)CrossRefGoogle Scholar
  25. 25.
    A.P. Ginsberg, R.L. Martin, R.W. Brookes, R.C. Sherwood, Inorg. Chem. 11, 2884–2889 (1972)CrossRefGoogle Scholar
  26. 26.
    C.J. O’Connor, Prog. Inorg. Chem. 29, 203–283 (1982)CrossRefGoogle Scholar
  27. 27.
    B.N. Figgis, J. Lewis, F.E. Mabbs, G.A. Webb, J. Chem. Soc. A 442–447 (1967)Google Scholar
  28. 28.
    B. Bleaney, K.W.H. Stevens, Rep. Prog. Phys. 16, 108–157 (1953)CrossRefGoogle Scholar
  29. 29.
    J. Mulak, Z. Gajek, The Effective Crystal Field Potential (Elsevier, Amsterdam, 2000)Google Scholar
  30. 30.
    K.S. Murray, Coord. Chem. Rev. 12, 1–35 (1974)CrossRefGoogle Scholar
  31. 31.
    J.C. Bonner, M.E. Fisher, Phys. Rev. A 135, 640–658 (1974)CrossRefGoogle Scholar
  32. 32.
    Y. Pei, M. Verdaguer, O. Kahn, J. Am. Chem. Soc. 108, 7428–7430 (1986)CrossRefGoogle Scholar
  33. 33.
    J.S. Miller, J.C. Calabrese, H. Rommelmann, S.R. Chittapeddi, J.H. Zhang, W.M. Reiff, A.J. Epstein, J. Am. Chem. Soc. 109, 769–781 (1987)CrossRefGoogle Scholar
  34. 34.
    A. Caneschi, D. Gatteschi, R. Sessoli, P. Rey, Acc. Chem. Res. 22, 392–398 (1987)CrossRefGoogle Scholar
  35. 35.
    M. Kinoshita, P. Turek, M. Tamura, K. Nozawa, D. Shiomi, Y. Nakazawa, M. Ishikawa, M. Takahashi, K. Awaga, T. Inabe, Y. Maruyama, Chem. Lett. 1225–1228 (1991)Google Scholar
  36. 36.
    S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, M. Verdaguer, Nature 378, 701–703 (1995)CrossRefGoogle Scholar
  37. 37.
    S.M. Holmes, G.S. Girolami, J. Am. Chem. Soc. 121, 5593–5594 (1999)CrossRefGoogle Scholar
  38. 38.
    Ø. Hatlevik, W.E. Buschmann, J. Zhang, J.L. Manson, J.S. Miller, Adv. Mater. 11, 914–918 (1999)CrossRefGoogle Scholar
  39. 39.
    S. Ohkoshi, M. Mizuno, G.J. Hung, K. Hashimoto, J. Phys. Chem. B 104, 9365–9367 (2000)CrossRefGoogle Scholar
  40. 40.
    O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 272, 704–705 (1996)CrossRefGoogle Scholar
  41. 41.
    A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin, M. Verdaguer, J. Am. Chem. Soc. 122, 6648–6652 (1995)CrossRefGoogle Scholar
  42. 42.
    D.M. Pajerowski, M.J. Andrus, J.E. Gardner, E.S. Knowles, M.W. Meisel, D.R. Tahlam, J. Am. Chem. Soc. 132, 4058–4059 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Larionova, R. Clerac, J. Sanchiz, O. Kahn, S. Golhen, L. Ouahab, J. Am. Chem. Soc. 120, 13088–13095 (1998)CrossRefGoogle Scholar
  44. 44.
    J. Milon, M.C. Daniel, A. Kaiba, P. Guionneau, S. Brandes, J.-P. Sutter, J. Am. Chem. Soc. 129, 13872–13878 (2007)CrossRefGoogle Scholar
  45. 45.
    K. Tomono, Y. Tsunobuchi, K. Nakabayashi, S. Ohkoshi, Inorg. Chem. 49, 1298–1300 (2010)CrossRefGoogle Scholar
  46. 46.
    X.-Y. Wang, A.V. Prosvirin, K.R. Dunbar, Angew. Chem. Int. Ed. 49, 5081–5084 (2010)CrossRefGoogle Scholar
  47. 47.
    R. Garde, C. Desplanches, A. Bleuzen, P. Veillet, M. Verdaguer, Mol. Cryst. Liq. Cryst. 334, 587–595 (1999)CrossRefGoogle Scholar
  48. 48.
    Z.J. Zhong, H. Seino, Y. Mizobe, M. Hidai, M. Verdaguer, S. Ohkoshi, K. Hashimoto, Inorg. Chem. 39, 5095–5101 (2000)CrossRefGoogle Scholar
  49. 49.
    B. Sieklucka, J. Szklarzewicz, T.J. Kemp, W. Errington, Inorg. Chem. 39, 5156–5158 (2000)CrossRefGoogle Scholar
  50. 50.
    R. Pradhan, C. Desplanches, P. Guionneau, J.-P. Sutter, Inorg. Chem. 42, 6607–6609 (2003)CrossRefGoogle Scholar
  51. 51.
    D. Pinkowicz, R. Podgajny, M. Bałanda, M. Makarewicz, B. Gaweł, W. Łasocha, B. Sieklucka, Inorg. Chem. 47, 9745–9747 (2008)CrossRefGoogle Scholar
  52. 52.
    J.M. Herrera, P. Franz, R. Podgajny, M. Pilkington, M. Biner, S. Decurtins, H. Stoeckli-Evans, A. Neels, R. Garde, Y. Dromzée, M. Julve, B. Sieklucka, K. Hashimoto, S. Ohkoshi, M. Verdaguer, C. R. Chim. 11, 1192–1199 (2008)CrossRefGoogle Scholar
  53. 53.
    R.L. Bris, Y. Tsunobuchi, C. Mathoniere, H. Tokoro, S. Ohkoshi, N. Ould-Moussa, G. Molnar, A. Bousseksou, J.F. Letard, Inorg. Chem. 51, 2852–2859 (2012)CrossRefGoogle Scholar
  54. 54.
    L. Néel, Ann. Phys. 3, 137–198 (1948)CrossRefGoogle Scholar
  55. 55.
    H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 11, 2704–2710 (1977)CrossRefGoogle Scholar
  56. 56.
    C. Creutz, Prog. Inorg. Chem. 30, 1–47 (1983)Google Scholar
  57. 57.
    B. Mayoh, P. Day, J. Chem. Soc., Dalton Trans. 1483–1486 (1976)Google Scholar
  58. 58.
    K. Itaya, I. Uchida, V. D. Neff, Acc. Chem. Res. 162–168 (1986)Google Scholar
  59. 59.
    A. Ito, M. Suenaga, K. Ono, J. Chem. Phys. 48, 3597–3599 (1968)CrossRefGoogle Scholar
  60. 60.
    D. Babel, Comments Inorg. Chem. 5, 285–320 (1986)CrossRefGoogle Scholar
  61. 61.
    T. Matsuda, H. Tokoro, M. Shiro, K. Hashimoto, S. Ohkoshi, Acta Cryst. E64, i11–i12 (2008)Google Scholar
  62. 62.
    S. Ohkoshi, T. Matsuda, S. Saito, T. Nuida, H. Tokoro, J. Phys. Chem. C 112, 13095–13098 (2008)CrossRefGoogle Scholar
  63. 63.
    H. Hennig, A. Rehorek, D. Rehorek, P. Thomas, Inorg. Chim. Acta 86, 41–49 (1984)CrossRefGoogle Scholar
  64. 64.
    D. Rehorek, J. Salvetter, A. Hantschmann, H. Hennig, Z. Stasicka, A. Chodkowska, Inorg. Chim. Acta 37, L471–L472 (1979)CrossRefGoogle Scholar
  65. 65.
    Z.J. Zhong, H. Seino, Y. Mizobe, M. Hidai, A. Fujishima, S. Ohkoshi, K. Hashimoto, J. Am. Chem. Soc. 122, 2952–2953 (2000)CrossRefGoogle Scholar
  66. 66.
    S. Chorazy, K. Nakabayashi, K. Imoto, J. Mlynarski, B. Sieklucka, S. Ohkoshi, J. Am. Chem. Soc. 134, 16151–16154 (2012)CrossRefGoogle Scholar
  67. 67.
    T. Hozumi, S. Ohkoshi, H. Seino, Y. Mizobe, K. Hashimoto, J. Phys. Chem. B 107, 11571–11574 (2003)CrossRefGoogle Scholar
  68. 68.
    S. Ohkoshi, Y. Tsunobuchi, H. Takahashi, T. Hozumi, M. Shiro, K. Hashimoto, J. Am. Chem. Soc. 129, 3084–3085 (2007)CrossRefGoogle Scholar
  69. 69.
    S. Ohkoshi, Y. Hamada, T. Matsuda, Y. Tsunobuchi, H. Tokoro, Chem. Mater. 20, 3048–3054 (2008)CrossRefGoogle Scholar
  70. 70.
    K. Imoto, M. Takemura, H. Tokoro, S. Ohkoshi, Eur. J. Inorg. Chem. 2649–2652 (2012)Google Scholar
  71. 71.
    D. Pinkowicz, R. Podgajny, W. Nitek, M. Rams, A.M. Majcher, T. Nuida, S. Ohkoshi, B. Sieklucka, Chem. Mater. 23, 21–31 (2011)CrossRefGoogle Scholar
  72. 72.
    K. Imoto, D. Takahashi, Y. Tsunobuchi, M. Arai, W. Kosaka, H. Tokoro, S. Ohkoshi, Eur. J. Inorg. Chem. 4079–4082 (2010)Google Scholar
  73. 73.
    S. Ohkoshi, Y. Einaga, A. Fujishima, K. Hashimoto, J. Electrochem. Soc. 473, 245–249 (1999)Google Scholar
  74. 74.
    M.B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 10, 247–422 (1967)CrossRefGoogle Scholar
  75. 75.
    C. Creutz, H. Taube, J. Am. Chem. Soc. 91, 3988–3989 (1969)CrossRefGoogle Scholar
  76. 76.
    S. Benard, E. Riviere, P. Yu, K. Nakatani, J.F. Delouis, Chem. Mater. 13, 159–162 (2001)CrossRefGoogle Scholar
  77. 77.
    N. Kida, M. Hitaka, I. Kashima, M. Okubo, M. Itoi, M. Enomoto, K. Kato, M. Takata, N. Kojima, J. Am. Chem. Soc. 131, 212–220 (2009)CrossRefGoogle Scholar
  78. 78.
    P. Gutlich, H.A. Goodwin, (eds.), Spin crossover in transition metal compounds I, II, III. Top. Curr. Chem. 233–235 (2004)Google Scholar
  79. 79.
    E. Konig, Prog. Inorg. Chem. 35, 527–622 (1987)CrossRefGoogle Scholar
  80. 80.
    P. Gutlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 33, 2024–2054 (1994)CrossRefGoogle Scholar
  81. 81.
    J.A. Real, E. Andres, M.C. Munos, M. Julve, T. Granier, A. Bousseksou, F. Vallet, Science 268, 265–267 (1995)CrossRefGoogle Scholar
  82. 82.
    O. Kahn, C.J. Martinez, Science 279, 44–48 (1998)CrossRefGoogle Scholar
  83. 83.
    D.M. Halepoto, D.G.L. Holt, L.F. Larkworthy, G.J. Leigh, D.C. Povey, G.W. Smith, J. Chem. Soc. Chem. Comm. 1322–1323 (1989)Google Scholar
  84. 84.
    P.G. Sim, E. Sinn, J. Am. Chem. Soc. 241–243 (1981)Google Scholar
  85. 85.
    P.N. Martinho, B. Gildea, M.M. Harris, T. Lemma, A.D. Naik, H.M. Bunz, T.E. Keyes, Y. Garcia, G.G. Morgan, Angew. Chem. Int. Ed. 51, 12597–12601 (2012)CrossRefGoogle Scholar
  86. 86.
    D. Cozak, F. Gauvin, J. Demers, Can. J. Chem. 64, 71–75 (1986)CrossRefGoogle Scholar
  87. 87.
    S. Hayami, Z. Gu, H. Yoshiki, A. Fujishima, O. Sato, J. Am. Chem. Soc. 123, 11644–11650 (2001)CrossRefGoogle Scholar
  88. 88.
    W. Klaui, W. Eberspach, P. Gutlich, Inorg. Chem. 26, 3977–3982 (1987)CrossRefGoogle Scholar
  89. 89.
    S. Brooker, P.G. Plieger, B. Moubaraki, K.S. Murray, Angew. Chem. Int. Ed. 38, 408–410 (1999)CrossRefGoogle Scholar
  90. 90.
    L. Cambi, L. Szego, Ber. Dtsch Ges. 64, 2591–2598 (1931)CrossRefGoogle Scholar
  91. 91.
    W.A. Baker, H.M. Bobonich, Inorg. Chem. 3, 1184–1188 (1964)CrossRefGoogle Scholar
  92. 92.
    J.F. Letard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O. Kahn, J. Am. Chem. Soc. 119, 10861–10862 (1997)CrossRefGoogle Scholar
  93. 93.
    K. Boukheddaden, I. Shteto, B. Hoo, F. Varret, Phys. Rev. B 62, 14796–14805 (2000)CrossRefGoogle Scholar
  94. 94.
    V. Niel, A.L. Thompson, M.C. Munoz, A. Galet, A.E. Goeta, J.A. Real, Angew. Chem. Int. Ed. 42, 3760–3763 (2003)CrossRefGoogle Scholar
  95. 95.
    P. Gutlich, R. Link, G. Steinhauser, Inorg. Chem. 17, 2509–2514 (1978)CrossRefGoogle Scholar
  96. 96.
    M. Nihei, L. Han, H. Oshio, J. Am. Chem. Soc. 129, 5312–5313 (2007)CrossRefGoogle Scholar
  97. 97.
    A. Bousseksou, G. Molnar, G. Matouzenko, Eur. J. Inorg. Chem. 4353–4369 (2004)Google Scholar
  98. 98.
    S. Decurtins, P. Gutlich, C.P. Kohler, H. Spiering, A. Hauser, Chem. Phys. Lett. 105, 1–4 (1984)CrossRefGoogle Scholar
  99. 99.
    A. Bousseksou, G. Molnar, P. Demont, J. Menegotto, J. Mater. Chem. 13, 2069–2071 (2003)CrossRefGoogle Scholar
  100. 100.
    G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion, Science 298, 1762–1765 (2002)CrossRefGoogle Scholar
  101. 101.
    M. Ohba, K. Yoneda, G. Agusti, M.C. Munoz, A.B. Gaspar, J.A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Angew. Chem. Int. Ed. 48, 4767–4771 (2009)CrossRefGoogle Scholar
  102. 102.
    A. Hauser, J. Chem. Phys. 94, 2741–2748 (1991)CrossRefGoogle Scholar
  103. 103.
    N. Ould-Moussa, E. Trzop, S. Mouri, S. Zein, G. Molnar, A. B. Gaspar, E. Collet, M. Buron-Le Cointe, J. A. Real, S. Borshch, K. Tanaka, H, Cailleau, A. Bousseksou, Phys. Rev. B, 75, 054101/1–8 (2007)Google Scholar
  104. 104.
    E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gutlich, E. Wegelius, K. Rissanen, Angew. Chem. Int. Ed. 39, 2504–2507 (2000)CrossRefGoogle Scholar
  105. 105.
    T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, M. Enomoto, A. Miyazaki, T. Enoki, J. Mater. Chem. 6, 119–121 (1996)CrossRefGoogle Scholar
  106. 106.
    V. Niel, J.M. Agudo-Martinez, M.C. Munoz, A.B. Gaspar, J.A. Real, Inorg. Chem. 40, 3838–3839 (2001)CrossRefGoogle Scholar
  107. 107.
    P.D. Southon, L. Liu, E.A. Fellows, D.J. Price, G.J. Halder, K.W. Chapman, B. Moubaraki, K.S. Murray, J.F. Letard, C.J. Kepert, J. Kepert J. Am. Chem. Soc. 131, 10998–11009 (2009)CrossRefGoogle Scholar
  108. 108.
    W. Kosaka, K. Nomura, K. Hashimoto, S. Ohkoshi, J. Am. Chem. Soc. 127, 8590–8591 (2005)CrossRefGoogle Scholar
  109. 109.
    M. Arai, W. Kosaka, T. Matsuda, S. Ohkoshi, Angew. Chem. Int. Ed. 47, 6885–6887 (2008)CrossRefGoogle Scholar
  110. 110.
    P. Colomban, J. Mol. Struct. 177, 277–308 (1988)CrossRefGoogle Scholar
  111. 111.
    P. Colomban, Proton conductors (Cambridge University Press, UK, 1992)CrossRefGoogle Scholar
  112. 112.
    B.C. Steele, A. Heinzel, Nature 414, 345–352 (2001)CrossRefGoogle Scholar
  113. 113.
    K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637–4678 (2004)CrossRefGoogle Scholar
  114. 114.
    M. Suzuki, H. Okazaki, Phys. Stat. Sol. A 42, 831–836 (1977)Google Scholar
  115. 115.
    M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 134, 5472–5475 (2012)CrossRefGoogle Scholar
  116. 116.
    H. Ōkawa, A. Shigematsu, M. Sadakiyo, T. Miyagawa, K. Yoneda, M. Ohba, H. Kitagawa, J. Am. Chem. Soc. 131, 13516–13517 (2009)CrossRefGoogle Scholar
  117. 117.
    E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo, H. Liu, B. Dkhil, F. Lloret, K. Nakagawa, H. Tokoro, S. Ohkoshi, M. Verdaguer, J. Am. Chem. Soc. 133, 15328–15331 (2011)CrossRefGoogle Scholar
  118. 118.
    S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, Nature Mater. 8, 831–836 (2009)CrossRefGoogle Scholar
  119. 119.
    J.A. Hurd, R. Vaidhyanathan, V. Thangadurai, C.I. Ratcliffe, I.L. Moudrakovski, G.K.H. Shimizu, Nature Chem. 1, 705–710 (2009)CrossRefGoogle Scholar
  120. 120.
    S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, H. Tokoro, J. Am. Chem. Soc. 132, 6620–6621 (2010)CrossRefGoogle Scholar
  121. 121.
    S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nature Chemistry 3, 564–569 (2011)CrossRefGoogle Scholar
  122. 122.
    K. Imoto, S. Ohkoshi, Chem. Lett. 45, 359–361 (2016)Google Scholar
  123. 123.
    K. Imoto, K. Nakagawa, H. Miyahara, S. Ohkoshi, Cryst. Growth Des. 13, 4673–4677 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan

Personalised recommendations