Pointwise Multipliers on Musielak-Orlicz-Morrey Spaces

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 206)

Abstract

In this paper we characterize pointwise multipliers from a Musielak-Orlicz-Morrey space to another Musielak-Orlicz-Morrey space. The set of all pointwise multipliers is also a Musielak-Orlicz-Morrey space.

Keywords

Musielak-Orlicz space Morrey space Variable exponent Pointwise multiplier Pointwise multiplication 

Notes

Acknowledgements

The author would like to thank the referee for her/his careful reading and useful comments. The author was supported by Grant-in-Aid for Scientific Research (B), No. 15H03621, Japan Society for the Promotion of Science.

References

  1. 1.
    Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogenes. Lecture Notes in Math, vol. 242. Springer, Berlin, New York (1971)Google Scholar
  2. 2.
    Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83(4), 569–645 (1977)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Math, vol. 2017. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Hytönen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54(2), 485–504 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kantorovich, L.V., Akilov, G.P.: Functional analysis. Translated from the Russian. In: Silcock H.L. (ed.) 2nd edn. Pergamon Press, Oxford-Elmsford, N.Y. (1982)Google Scholar
  6. 6.
    Maligranda, L.: Orlicz spaces and interpolation, Seminars in mathematics 5. Universidade Estadual de Campinas, Brasil, Departamento de Matemática (1989)MATHGoogle Scholar
  7. 7.
    Maligranda, L., Nakai, E.: Pointwise multipliers of orlicz spaces. Arch. Math. 95, 251–256 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Maligranda, L., Persson, L.E.: Generalized duality of some banach function spaces. Indag. Math. 51(3), 323–338 (1989)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43, 126–166 (1938)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Math, vol. 1034. Springer, Berlin (1983)Google Scholar
  11. 11.
    Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166(1), 95–103 (1994)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Nakai, E.: Pointwise multipliers. Mem. Akashi Coll. Technol. 37, 85–94 (1995)Google Scholar
  13. 13.
    Nakai, E.: Pointwise multipliers on the Morrey spaces, Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 46(1), 1–11 (1997)Google Scholar
  14. 14.
    Nakai, E.: A characterization of pointwise multipliers on the Morrey spaces. Sci. Math. 3(3), 445–454 (2000)MATHMathSciNetGoogle Scholar
  15. 15.
    Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces, pp. 323–333. Yokohama Publishers, Yokohama, Banach and Function Spaces (2004)MATHGoogle Scholar
  16. 16.
    Nakai, E.: Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math. 188(3), 193–221 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Nakai, E.: Generalized fractional integrals on generalized Morrey spaces. Math. Nachr. 289(2–3), 339–351 (2014)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Nakai, E.: Pointwise multipliers on Musielak-Orlicz spaces. Nihonkai Math. J. 27(1), 135–146 (2016)MathSciNetGoogle Scholar
  19. 19.
    Nakai, E.: Pointwise multipliers on several function spaces—a survey—, Linear Nonlinear Anal. 3(1), 27–59 (2017)Google Scholar
  20. 20.
    Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Japon. 46(1), 15–28 (1997)MATHMathSciNetGoogle Scholar
  21. 21.
    Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd, Tokyo (1950)MATHGoogle Scholar
  22. 22.
    O’Neil, R.: Fractional integration in Orlicz spaces. I. Trans. Amer. Math. Soc. 115, 300–328 (1965)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Acad. Polon. A 207–220; reprinted in his Collected Papers. PWN Wars. 1988, 217–230 (1932)Google Scholar
  24. 24.
    Orlicz, W.: Räume, Über, \((L^{M})\). Bull. Acad. Polon A 93–107; reprinted in his Collected Papers. PWN Wars. 1988, 345–359 (1936)Google Scholar
  25. 25.
    Peetre, J.: On the theory of \(\cal{L}_{p,\lambda }\) spaces. J. Funct. Anal. 4, 71–87 (1969)CrossRefMATHGoogle Scholar
  26. 26.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991)MATHGoogle Scholar
  27. 27.
    Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin. 21, 1535–1544 (2005)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Sihwaningrum, I., Gunawan, H., Nakai, E.: Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces. (preprint)Google Scholar
  29. 29.
    Torchinsky, A.: Interpolation of operations and Orlicz classes. Stud. Math. 59(2), 177–207 (1976)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Yang, D., Liang, Y., Ky, L.D.: Real-variable theory of Musielak-Orlicz Hardy spaces. Lecture Notes in Math, vol. 2182. Springer. (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Department of MathematicsIbaraki UniversityMito, IbarakiJapan

Personalised recommendations