Skip to main content
Book cover

Polymer Gels pp 309–341Cite as

Radiation Dosimetry—A Different Perspective of Polymer Gel

  • Chapter
  • First Online:

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Medical physics has gained much interest in the past few decades with the introduction of polymer gels which act both as a phantom and a dosimeter. These polymer gels act as the substrate for the dose to act upon, after which the distribution can be read three-dimensionally. Mainly consisting of a gelling agent, monomer, crosslinker, and an antioxidant, these dosimeters on exposure to ionizing radiation polymerize as a function of the absorbed dose. This dose can be readout using modalities like MRI, X-ray CT, optical CT scanner, etc. Various combinations of polymer gels are presented including ones made with modifications to the present ingredients or addition of nanoparticles. The additions of nanoparticles enhance the dose for improved therapeutic efficiency. Being tissue equivalent and having good spatial resolution make it a new class of dosimeter which can replace the conventional dosimeters. The fundamental science behind the technique, gel preparation, and areas of future potential developments to improve the validation for lower dose than current fractional radiotherapy dose is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamovics J, Maryanski M (2003) New 3D radiochromic solid polymer dosimeter from leuco dyes and a transparent polymeric matrix. Med Phys 30:1349

    Google Scholar 

  • Alexander P, Charlesby A, Ross M (1954) The degradation of solid polymethylmethacrylate by ionizing radiations. P Roy Soc Lond A Mat 223:392–404

    Article  CAS  Google Scholar 

  • Alqathami M, Blencowe A, Yeo UJ, Doran SJ, Qiao G, Geso M (2012) Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. Int J Radiat Oncol 84:e549–e555

    Article  Google Scholar 

  • Alqathami M, Blencowe A, Yeo UJ, Franich R, Doran S, Qiao G, Geso M (2013) Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: a dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. J Phys: Conf Ser 444:012025

    Google Scholar 

  • Andrews HL, Murphy RE, LeBrun EJ (1957) Gel dosimeter for depth dose measurements. Rev Sci Instrum 28:329–332

    Article  CAS  Google Scholar 

  • Atae G, Mahdavi SR, Mohammadi NA, Taheri OM, Khadem AM (2015) Effect of mega voltage energy on dose enhancement in phantom study by using gold nanoparticle polymer gel dosimeter. Inter J Biomed Sci Engg 3:1–4

    Google Scholar 

  • Audet C, Duzenli C, Kwa W, Tsang V, Mackay A (1996) An example of MRI polymer dosimetry applied to 3D conformal radiotherapy. Med Phys 23:803

    Google Scholar 

  • Avery S, Kraus J, Lin L, Kassaee A, Maryanski M (2015) MO-F-CAMPUS-T02: dosimetric accuracy of the crystalball: new reusable radiochromic polymer gel dosimeter for patient QA in proton therapy. Med Phys 42:3581

    Article  Google Scholar 

  • Babaei M, Ganjalikhani M (2014) The potential effectiveness of nanoparticles as radiosensitizers for radiotherapy. Bioimpacts 4:15–20

    PubMed  PubMed Central  CAS  Google Scholar 

  • Babic S, Battista J, Jordan K (2009) Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel. Phys Med Biol 54:6791–6808

    Article  PubMed  CAS  Google Scholar 

  • Back SA (1998) Implementation of MRI gel dosimetry in radiation therapy. Ph.D. thesis, Department of radiation physics, Malmo Lund University, Sweden

    Google Scholar 

  • Baldock C (2006) Historical overview of the development of gel dosimetry. J Phys: Conf Ser 56:14–22

    CAS  Google Scholar 

  • Baldock C, Burford RP, Billingham NC, Cohen D, Keevin SF (1996) Polymer gel composition in MRI dosimetry. Med Phys 23:1070

    Google Scholar 

  • Baldock C, Burford RP, Billingham NC, Wagner GS, Patval S, Badawi R, Keevil SF (1998a) Experimental procedure for the manufacture and calibration of Polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 43:695–702

    Article  PubMed  CAS  Google Scholar 

  • Baldock C, Rintoul L, Keevil SF, Pope JM, George GA (1998b) Fourier transform raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Phys Med Biol 43:3617–3627

    Article  PubMed  CAS  Google Scholar 

  • Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basfar AA, Moftah B, Rabaeh KA, Almousa AA (2015) Novel composition of polymer gel dosimeters based on N-(Hydroxymethyl) acrylamide for radiation therapy. Radiat Phys Chem 112:117–120

    Article  CAS  Google Scholar 

  • Bero MA, Gilboy WB, Glover PM, El-masri HM (2000) Tissue-equivalent gel for non-invasive spatial radiation dose measurements. Nucl Instrum Meth B 166–167:820–825

    Article  Google Scholar 

  • Boni AL (1961) A polyacrylamide gamma dosimeter. Radiat Res 14:374–380

    Article  Google Scholar 

  • Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloid Surface B 72:128–134

    Article  CAS  Google Scholar 

  • Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838

    Article  PubMed  CAS  Google Scholar 

  • Chang YJ, Hsieh LL, Liu MH, Liu JS, Hsieh BT (2013) The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents. J Phys: Conf Ser 444:012109

    Google Scholar 

  • Cheow WS, Xu R, Hadinoto K (2013) Towards sustainability: new approaches to nano-drug preparation. Curr Pharm Des 19:6229–6245

    Article  PubMed  CAS  Google Scholar 

  • Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho Y, Lee D, Lee Y, Park J, Kim K, Jung H, Ji Y, Chang U, Kwon S (2014) Dosimetric evaluation of polymer gel dosimeter using saccharide in clinical radiation therapy system. Int J Radiat Oncol 90:S936

    Article  Google Scholar 

  • Cooper DR, Bekah D, Nadeau JL (2014) Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day MJ, Stein G (1950) Chemical effects of ionizing radiation in some gels. Nat 166:146–147

    Article  CAS  Google Scholar 

  • De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463

    Article  PubMed  Google Scholar 

  • Deyhimihaghighi N, Mohd Noor N, Soltani N, Jorfi R, Erfani Haghir M, Adenan MZ, Saion E, Khandaker MU (2014) Contrast enhancement of magnetic resonance imaging (MRI) of polymer gel dosimeter by adding Platinum nano-particles. J Phys: Conf Ser 546:012013

    Google Scholar 

  • Dong C, Zhang X, Cai H (2014) Green synthesis of monodisperse silver nanoparticles using hydroxyl propyl methyl cellulose. J Alloy Compd 583:267–271

    Article  CAS  Google Scholar 

  • Doran SJ, Koerkamp KK, Bero MA, Jenneson P, Morton EJ, Gilboy WB (2001) A CCD-based optical-CT scanner for high-resolution 3D-imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results. Phys Med Biol 46:3191–3213

    Article  PubMed  CAS  Google Scholar 

  • DOSGEL (1999) In: Schreiner LJ, Audet C (eds) Proceeding 1st international workshop on radiation therapy gel dosimetry. Canadian organization of medical physicists, Lexington, KY

    Google Scholar 

  • DOSGEL (2001) In: Baldock C, De Deene Y (eds) Proceeding 1st international conference on radiation therapy gel dosimetry. Queensland University of Technology, Brisbane, Australia

    Google Scholar 

  • DOSGEL (2004) In: Deene Y De, Baldock C (eds) Proceeding 3rd international conference on radiation therapy gel dosimetry. Ghent University, Ghent, Belgium

    Google Scholar 

  • DOSGEL (2006) In: Lepage M, Jirasek A, Schreiner LJ (eds) Proceeding 4th international conference on radiation therapy gel dosimetry. Universit´e de Sherbrooke, Sherbrooke, Canada

    Google Scholar 

  • DOSGEL (2008). In: Maris TG, Pappas E (eds) Proceeding 5th international conference on radiation therapy gel dosimetry. University of Crete, Greece

    Google Scholar 

  • El- Alaily TM, El- Nimr MK, Saafan SA, Kamel MM, Meaz TM, Assar ST (2015) Construction and calibration of a low cost and fully automated vibrating sample magnetometer. J Magn Magn Mater 386:25–30

    Article  CAS  Google Scholar 

  • Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B 155:34–38

    Article  PubMed  CAS  Google Scholar 

  • Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta A 145:176–180

    Article  CAS  Google Scholar 

  • Farajollahi AR, Bonnett DE, Aukett RJ, Radcliffe AJ (1997) The advantages and limitations of polymer gel dosimetry in brachytherapy. J Int Fed Med Biol Eng 35:1012

    Google Scholar 

  • Fernandes JP, Pastorello BF, de Araujo DB, Baffa O (2008) Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity. Phys Med Biol 53:N53–N58

    Article  PubMed  Google Scholar 

  • Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46:3105–3113

    Article  PubMed  CAS  Google Scholar 

  • Fricke H, Morse S (1927) The chemical action of Roentgen rays on dilute ferrous sulphate solutions as a measure of radiation dose. Am J Roentgenol Radium Ther Nucl Med 18:430–432

    CAS  Google Scholar 

  • Gafar SM, El-Ahdal MA (2015) Radiochromic fuchsine-gel and its possible use for low dosimetry applications. Adv Polym Tech. https://doi.org/10.1002/adv.21538

    Article  Google Scholar 

  • Gafar SM, El-Kelany MA, El-Ahdal MA, El-Shawadfy SR (2014) Toluidine Blue O-gelatin gel dosimeter for radiation processing. Open J Polym Chem 4:56–61

    Article  CAS  Google Scholar 

  • Gambarini G, Arrigoni S, Bonardi M, Cantone MC, deBartolo D, Desiati S, Facchielli L, Sichirollo AE (1994) A system for 3-D absorbed dose measurements with tissue-equivalence for thermal neutrons. Nucl Instrum Meth A 353:406–410

    Article  CAS  Google Scholar 

  • Gochberg DF, Kennan RP, Maryanski MJ, Gore JC (1998) The role of specific side groups and pH in magnetization transfer in polymers. J Magn Reson 131:191–198

    Article  PubMed  CAS  Google Scholar 

  • Gore JC, Kang YS, Schulz RJ (1984) Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Gore JC, Ranade M, Maryanski MJ, Schulz RJ (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner. Phys Med Biol 41:2695–2704

    Article  PubMed  CAS  Google Scholar 

  • Govi N, Gueye P, Avery S (2013) Application of MAGAT polymer gel dosimetry in breast balloon. J Phys: Conf Ser 444:012103

    Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  PubMed  CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new x-ray contrast agent. Br J Radiol 79:248–253

    Article  PubMed  CAS  Google Scholar 

  • Hassani H, Nedaie HA, Zahmatkesh MH, Shirani K (2014) A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films. Med Dosim 39:102–107

    Article  PubMed  Google Scholar 

  • Hayashi S, Fujiwara F, Usui S, Tominaga T (2012) Effect of inorganic salt on the dose sensitivity of polymer gel dosimeter. Radiat Phys Chem 81:884–888

    Article  CAS  Google Scholar 

  • Helan V, Prince JJ, Al-Dhabi NA, Arasu MV, Ayeshamariam A (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Res Phys 6:712–718

    Google Scholar 

  • Hilts M, Duzenli C (2004) Image filtering for improved dose resolution in CT polymer gel dosimetry. Med Phys 31:39–49

    Article  PubMed  Google Scholar 

  • Hilts M, Audet C, Duzenli C, Jirasek A (2000) Polymer gel dosimetry using x-ray computed tomography: a feasibility study. Phys Med Biol 45:2559–2571

    Article  PubMed  CAS  Google Scholar 

  • Hiroki A, Sato Y, Nagasawa N, Ohta A, Seito H, Yamabayashi H, Yamamoto T, Taguchi M, Tamada M, Kojima T (2001) Preparation of polymer gel dosimeters based on less toxic monomers and gellan gum. J Phys: Conf Ser 58:7131–7141

    Google Scholar 

  • Hiroki A, Yamashita S, Sato Y, Nagasawa N, Taguchi M (2013) New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix. J Phys: Conf Ser 444:012028

    Google Scholar 

  • Hoecker FE, Watkins IW (1958) Radiation polymerization dosimetry. Int J Appl Radiat Is 3:31–35

    Article  CAS  Google Scholar 

  • Hsieh B, Chiang C, Hung P, Kao C, Liang J (2011) Preliminary investigation of a new type of propylene based gel dosimeter (DEMBIG). J Radioanal Nucl Ch 288:799–803

    Article  CAS  Google Scholar 

  • Ibbott GS, Bova FJ, Maryanski MJ, Zhang Y, Holcomb S, Avison RG, Meeks SL (1996) Use of BANG polymer gel dosimeter to evaluate repeat-fixation stereotactic radiation therapy. Med Phys 23:1070

    Google Scholar 

  • Ibbott GS, Maryanski MJ, Eastman P, Holcomb SD, Zhang Y, Avison R, Sanders M, Gore JC (1997) Three dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG gel dosimeters. Int J Radiat Oncol Biol Phys 38:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jelveh S, Chithrani DB (2011) Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers 3:1081–1110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeremic B, Aguerri AR, Filipovic N (2013) Radiosensitization by gold nanoparticles. Clin Transl Oncol 15:593–601

    Article  PubMed  CAS  Google Scholar 

  • Jirasek A, Hilts M, McAuley KB (2010) Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry. Phys Med Biol 55:5269–5281

    Article  PubMed  CAS  Google Scholar 

  • Jordan K (2009) Optical CT scanning of cross-linked radiochromic gel without cylinder wall. J Phys: Conf Ser 164:012029

    Google Scholar 

  • Jordan K, Avvakumov N (2009) Radiochromic leuco dye micelle hydrogels: I initial investigation. Phys Med Biol 54:141–153

    Article  CAS  Google Scholar 

  • Kakade NR, Sharma SD (2015) Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J Can Res Ther 11:94–97

    Article  Google Scholar 

  • Kalaiselvi A, Roopan SM, Madhumitha G, Ramalingam C, Elango G (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta A 135:116–119

    Article  CAS  Google Scholar 

  • Kalin IP, Mequanint K (2013) The effect of mixed dopants on the stability of Fricke gel dosimeters. J Phys: Conf Ser 444:012105

    Google Scholar 

  • Kamiar A, Ghotaslou R, Valizadeh H (2013) Preparation, physicochemical characterization and performance evaluation of gold nanoparticles in radiotherapy. Adv Pharn Bull 3:425–428

    Google Scholar 

  • Kawamura H, Shinoda K, Miyamoto K, Sakae T, Monma M, Matsumura A (2013) Investigation of polymer gel dosimetry for small circular irradiated fields. Nihon Hoshasen Gijutsu Gakkai zasshi 69:933–943

    Article  PubMed  Google Scholar 

  • Kennan RP, Richardson KA, Zhong J, Maryanski MJ, Gore JC (1996) The effects of cross-link density and chemical exchange on magnetization transfer in Polyacrylamide gels. J Magn Reson 110:267–277

    Article  CAS  Google Scholar 

  • Khadem AM, Mahdavi M, Mahdavi SRM, Ataei G (2013) Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy. Int J Radiat Res 11:55–61

    Google Scholar 

  • Khan FM (2003) The physics of radiation therapy. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A (2014) The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line du145 at megavoltage radiation energies. Int J Radiat Biol 90:1–6

    Article  CAS  Google Scholar 

  • Khosravi H, Hashemi B, Mahdavi SR, Hejazi P (2015) Effect of gold nanoparticles on prostate dose distribution under ir-192 internal and 18 mv external radiotherapy procedures using gel dosimetry and monte carlo method. J Biomed Phys Eng 5:3–14

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi K, Usami N, Porcel E, Lacombe S, LeSech C (2010) Enhancement of radiation effect by heavy elements. Mutat Res 704:123–131

    Article  PubMed  CAS  Google Scholar 

  • Krstajic N, Doran S (2006) Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry. Phys Med Biol 51:2055–2075

    Article  PubMed  Google Scholar 

  • Krstajic N, Doran S (2007) Fast laser scanning optical-CT apparatus for 3D radiation dosimetry. Phys Med Biol 52:N257–N263

    Article  PubMed  Google Scholar 

  • Kumar DS, Samuel EJJ (2012) Polymer gel dosimetry for radiation therapy. In: Gopishankar N (ed) Modern practices in radiation therapy. Intech, Germany, pp 309–326

    Google Scholar 

  • Kumar M, Varshney L, Francis S (2005) Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. J Radiat Phys Chem 73:21–27

    Article  CAS  Google Scholar 

  • Kumar DA, Palanichamy V, Roopan SM (2014) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta A 127:168–171

    Article  CAS  Google Scholar 

  • Kumar DA, Palanichamy V, Roopan SM (2015) One step production of AgCl nanoparticles and its antioxidant and photo catalytic activity. Mater Lett 144:62–64

    Article  CAS  Google Scholar 

  • Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2:330–342

    CAS  Google Scholar 

  • Lai T, Park HG, Choi SH (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105:325–330

    Article  CAS  Google Scholar 

  • Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, Khalil E, Billotey C, Janier M, Lux F, Epicier T, Perriat P, Roux S, Tillement O (2011) Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 5:9566–9574

    Article  PubMed  CAS  Google Scholar 

  • Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, Truillet C, Sancey L, Perriat P, Lux F, Tillement O (2014) Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol 5:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung MKK, Chow JCL, Chithrani BD, Lee MJG, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by x-rays: monte carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624–631

    Article  PubMed  CAS  Google Scholar 

  • Low DA, Dempsey JF, Venkatesan R, Mutic S, Markman J, Haacke EM, Purdy JA (1999) Evaluation of polymer gels and MRI as a 3D dosimeter for intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 26:15

    Google Scholar 

  • Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, Borghi E, Levy L (2012) Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 8:1167–1181

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi M, Khadem AM, Mahdavi SRM, Ataei G (2013) Effect of gold nanoparticle on percentage depth dose enhancement on megavoltage energy in MAGICA polymer gel dosimeter. J Biomed Phys Eng 3:37–44

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, Pottier A (2014) Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol 9:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marques T, Schwarcke M, Garrido C, Zucolotto V, Baffa O, Nicolucci P (2010) Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. J Phys: Conf Ser 250:012084

    Google Scholar 

  • Maryanski MJ, Gore JC, Schulz RJ (1992) 3-D radiation dosimetry by MRI: solvent proton relaxation enhancement by radiation-controlled polymerisation and cross-linking in gels. Proc Intl Soc Mag Reson Med (New York)

    Google Scholar 

  • Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258

    Article  PubMed  CAS  Google Scholar 

  • Maryanski MJ, Gore JC, Schulz R (1994a) Three-dimensional detection, dosimetry and imaging of an energy field by formation of a polymer in a gel. US Patent 5,321,357

    Google Scholar 

  • Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994b) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455

    Article  PubMed  CAS  Google Scholar 

  • Maryanski MJ, Zastavker YZ, Gore JC (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: 2. Optical properties of the BANG polymer gel. Phys Med Biol 41:2705–2717

    Article  PubMed  CAS  Google Scholar 

  • Maryanski MJ, Audet C, Gore JC (1997) Effects of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter. Phys Med Biol 42:303–311

    Article  PubMed  CAS  Google Scholar 

  • Mather ML, Charles PH, Baldock C (2003) Measurement of ultrasonic attenuation coefficient in polymer gel dosimeters. Phys Med Biol 48:N269–N275

    Article  PubMed  CAS  Google Scholar 

  • Mattea F, Chacón D, Vedelago J, Valente M, Miriam CS (2015) Polymer gel dosimeter based on itaconic acid. Appl Radiat Isotopes 105:98–104

    Article  CAS  Google Scholar 

  • McJury M, Oldham M, Leach MO, Webb S (1999a) Dynamics of polymerization in polyacrylamide gel (PAG) dosimeters: (i) aging and long-term stability. Phys Med Biol 44:1863–1873

    Article  PubMed  CAS  Google Scholar 

  • McJury M, Tapper PD, Cosgrove VP, Murphy PS, Griffin S, Leach M, Webb S, Oldham M (1999b) Experimental 3D dosimetry around a high dose-rate clinical 192Ir source using a polyacrylamide gel (PAG) dosimeter. Phys Med Biol 44:2431–2444

    Article  PubMed  CAS  Google Scholar 

  • McJury M, Oldham M, Cosgrove VP, Murphy PS, Doran S, Leach MO, Webb S (2000) Radiation dosimetry using polymer gels: methods and applications. Br J Radiol 73:919–929

    Article  PubMed  CAS  Google Scholar 

  • McMahon SJ, Mendenhall MH, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651

    Article  PubMed  Google Scholar 

  • Meesat R, Jay-Gerin JP, Khalil A, Lepage M (2009) Evaluation of the dose enhancement of iodinated compounds by polyacrylamide gel dosimetry. Phys Med Biol 54:5909–5917

    Article  PubMed  CAS  Google Scholar 

  • Miladi I, Le Duc G, Kryza D, Berniard A, Mowat P, Roux S, Taleb J, Bonazza P, Perriat P, Lux F, Tillement O, Billotey C, Janier M (2013) Biodistribution of ultrasmall gadolinium-based nanoparticles as theranostic agent: application to brain. J Biomater Appl 28:385–394

    Article  PubMed  CAS  Google Scholar 

  • Nagahata T, Yamaguchi H, Monzen H, Nishimura Y (2014) The use of polymer gel dosimetry to measure dose distribution around metallic implants. Nihon Hoshasen Gijutsu Gakkai Zasshi 70:1160–1165

    Article  PubMed  Google Scholar 

  • Oldham M, McJury M, Baustert I, Webb S, Leach MO (1998) Improving calibration accuracy in gel dosimetry. Phy Med Biol 43:2709–2720

    Article  CAS  Google Scholar 

  • Oldham M, Siewerdsen JH, Shetty A, Jaffray DA (2001) High resolution gel-dosimetry by optical-CT and MR scanning. Med Phys 28:1436–1445

    Article  PubMed  CAS  Google Scholar 

  • Olsson LE, Westrin BA, Fransson A, Nordell B (1992) Diffusion of ferric ions in agarose dosimeter gels. Phys Med Biol 37:2243–2252

    Article  CAS  Google Scholar 

  • Ono K, Fujimoto S, Hayashi S, Miyazawa M, Akagi Y, Hirokawa Y (2015) Dosimetric evaluation of ArcCHECK and 3DVH system using customized polymer gel dosimeter. Med Phys 42:3406

    Article  Google Scholar 

  • Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1:228–234

    Google Scholar 

  • Pilarova (Vavru) K, Kozubikovaá P, Solc J, Spevacek V (2014) Characteristics of polyacrylamide gel with THPC and turnbull blue gel dosimeters evaluated using optical tomography. Radiat Phys Chem 104:283–286

    Google Scholar 

  • Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnol 21:085103

    Article  CAS  Google Scholar 

  • Porcel E, Kobayashi K, Usami N, Remita H, Le Sech C, Lacombe S (2011) Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays. J Phys: Conf Ser 261:012004

    Google Scholar 

  • Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    Article  PubMed  CAS  Google Scholar 

  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol 5:136–142

    Article  CAS  Google Scholar 

  • Rahman WN, Wonga CJ, Yagi N, Davidson R, Geso M (2010) Dosimetry and its enhancement using gold nanoparticles in synchrotron based microbeam and stereotactic radiosurgery. AIP Conf Proc 1266:107

    Article  CAS  Google Scholar 

  • Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloid Surf B 92:209–212

    Article  CAS  Google Scholar 

  • Roopan SM, Surendra TV, Elango G, Kumar SHS (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300

    Article  PubMed  CAS  Google Scholar 

  • Sakhalkar HS, Oldham M (2008) Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation. Med Phys 35:101–111

    Article  PubMed  CAS  Google Scholar 

  • Samuel EJJ, Sathiyaraj P, Titus D, Kumar DS (2015) Antioxidant effect of green tea on polymer gel dosimeter. J Phys: Conf Ser 573:012065

    Google Scholar 

  • Schreiner LJ (2004) Review of Fricke gel dosimeters. J Phys: Conf Ser 3:9–21

    CAS  Google Scholar 

  • Sellakumar P, Samuel EJJ, Supe SS (2007) Water equivalence of polymer gel dosimeters. Radiat Phys Chem 76:1108–1115

    Article  CAS  Google Scholar 

  • Senden RJ, De Jean P, McAuley KB, Schreiner LJ (2006) Polymer gel dosimetry with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 51:3301–3314

    Article  PubMed  CAS  Google Scholar 

  • Senkesen O, Tezcanli E, Buyuksarac B, Ozbay I (2014) Comparison of 3D dose distributions for HDR 192Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system. Med Dosim 39:266–271

    Article  PubMed  Google Scholar 

  • Solc J, Spevacek V (2009) New radiochromic gel for 3D dosimetry based on Turnbull blue: basic properties. Phys Med Biol 54:5095–5101

    Article  PubMed  CAS  Google Scholar 

  • Soliman YS (2014) Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat Phys Chem 102:60–67

    Article  CAS  Google Scholar 

  • Su XY, Liu PD, Wu H, Gu N (2014) Enhancement of radiosensitization by metal-based nanoparticles in cancer radiationtherapy. Cancer Biol Med 11:86–91

    PubMed  PubMed Central  CAS  Google Scholar 

  • Subramanian B, Ravindran PB, Baldock C (2006) Optimization of the imaging protocol of an X-ray CT scanner for evaluation of normoxic polymer gel dosimeters. J Med Phys 31:72–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Surendra TV, Roopan SM, Arasu MV, Al-Dhabi NA, Rayalu GM (2016) RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J Photochem Photobiol, B 162:550–557

    Article  CAS  Google Scholar 

  • Taupin F, Flaender M, Delorme R, Brochard T, Mayol J, Arnaud J, Perriat P, Sancey L, Lux F, Barth RF, Carrière M, Ravanat J, Elleaume H (2015) Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol 60:4449–4464

    Article  PubMed  CAS  Google Scholar 

  • Temgire MK, Joshi SS (2004) Optical and structural studies of silver nanoparticles. J Radiat Phys Chem 71:1039–1044

    Article  CAS  Google Scholar 

  • Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromolec 72:834–847

    Article  CAS  Google Scholar 

  • Trapp JV, Leach MO, Webb S (2005) Preliminary dose response study of a gel dosimeter using 2-Hydroxyethyl Methacrylate (HEMA). Australas Phys Eng Sci Med 28:172–174

    Article  PubMed  CAS  Google Scholar 

  • Vachier MC, Rutledge DN (1996) Influence of temperature, pH, water content, gel strength and their interactions on NMR relaxation of gelatins IÐ analysis of the calculated relaxation times. J Magn Reson Analysis 2:311–320

    Google Scholar 

  • Van den Heuvel F, Locquet JP, Nuyts S (2010) Beam energy considerations for gold nano-particle enhanced radiation treatment. Phys Med Biol 55:4509–4520

    Article  PubMed  Google Scholar 

  • Van Doorn T, Bhat M, Rutten TP, Tran T, Costanzo A (2005) A fast, high spatial resolution optical tomographic scanner for measurement of absorption in gel dosimetry. Australas Phys Eng Sci Med 28:76–85

    Article  Google Scholar 

  • Vegera AV, Zimon AD (2006) Synthesis and physicochemical properties of silver nanoparticles stabilized by acid gelatin. Rus J Appl Chem 79:1403–1406

    Article  CAS  Google Scholar 

  • Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C (2005a) Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 50:3875–3888

    Article  PubMed  CAS  Google Scholar 

  • Venning AJ, Nitschke KN, Keall PJ, Baldock C (2005b) Radiological properties of normoxic polymer gel dosimeters. Med Phys 32:1047–1053

    Article  PubMed  CAS  Google Scholar 

  • Vergote K, De Deene Y, Claus F, De Gersem W, Van Duyse B, Paelinck L, Achten E, De Neve W, De Wagter C (2003) Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions. Radiother Oncol 67:119–128

    Article  PubMed  CAS  Google Scholar 

  • Vergote K, De Deene Y, Bussche EV, De Wagter C (2004) On the relation between the spatial dose integrity and the temporal instability of polymer gel dosimeters. Phys Med Biol 49:4507–4522

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nakaguchi Y (2013) 3D evaluation of 3DVH program using BANG3 polymer gel dosimeter. Med Phys 40:082101

    Article  PubMed  CAS  Google Scholar 

  • Wuu C-S, Schiff P, Maryanski MJ, Liu T, Borzillary S, Weinberger J (2003) Dosimetry study of Re-188 liquid balloon for intravascular brachytherapy using polymer gel dosimeters and laser-beam optical-CT scanner. Med Phys 30:132–137

    Article  PubMed  CAS  Google Scholar 

  • Yao T, Denkova AG, Warman JM (2014) Polymer-gel formation and reformation on irradiation of tertiary-butyl acrylate. Radiat Phys Chem 97:147–152

    Article  CAS  Google Scholar 

  • Yun Z, Pingqiang W, Bo L, Li Maoshun, Wuxiong F, Rui C (2010) An improvement for polymer gel dosimeter of type PAGAT. Nucl Electron Detect Technol 30:935–939

    Google Scholar 

  • Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Reese TG, Crowley EM, El Fakhri G (2010) Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry. Med Phys 37:183–188

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Mohana Roopan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Titus, D., Samuel, E.J.J., Roopan, S.M. (2018). Radiation Dosimetry—A Different Perspective of Polymer Gel. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6086-1_8

Download citation

Publish with us

Policies and ethics