Skip to main content

Gel Formation by Non-covalent Cross-Linking from Amylose Through Enzymatic Polymerization

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

  • 1165 Accesses

Abstract

Polymer gels are constructed by polymeric network structures with cross-linking points, which stably include a large amount of dispersion media, leading to functional soft materials. The specific formation of cross-linking points contributes to exhibiting unique properties of the resulting gels. In this chapter, we focus on the gel formation through non-covalent cross-linking from amylose, a natural polysaccharide. Amylose has a helical conformation, which is able to form two types of complexes, that is, double helix by two amylose chains and inclusion complex with other molecules having suitable structures and sizes. Because a well-defined amylose can be synthesized by enzymatic polymerization by phosphorylase catalysis, the studies on the dynamic gel formation through non-covalent, double helical, and inclusion complexing, cross-linking from amylose has been achieved by means of the enzymatic polymerization field. The resulting gels showed unique properties and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arimura T, Omagari Y, Yamamoto K, Kadokawa J (2011) Chemoenzymatic synthesis and hydrogelation of amylose-grafted xanthan gums. Int J Biol Macromol 49:498–503

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Brown TR (2014) Biorenewable resources: engineering new products from agriculture, 2nd edn. Wiley Blackwell, Chichester

    Book  Google Scholar 

  • Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23:1335–1352

    Article  CAS  PubMed  Google Scholar 

  • Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595

    Article  CAS  Google Scholar 

  • Eisenhaber F, Schulz W (1992) Monte-carlo simulation of the hydration shell of double-helical amylose—a left-handed antiparallel double helix fits best into liquid water-structure. Biopolymers 32:1643–1664

    Article  CAS  Google Scholar 

  • Fujii K, Takata H, Yanase M, Terada Y, Ohdan K, Takaha T, Okada S, Kuriki T (2003) Bioengineering and application of novel glucose polymers. Biocatal Biotransform 21:167–172

    Article  CAS  Google Scholar 

  • Hatanaka D, Takemoto Y, Yamamoto K, J-i Kadokawa (2014) Hierarchically self-assembled nanofiber films from amylose-grafted carboxymethyl cellulose. Fibers 2:34–44

    Article  CAS  Google Scholar 

  • Hinrichs W, Buttner G, Steifa M, Betzel C, Zabel V, Pfannemuller B, Saenger W (1987) An amylose antiparallel double helix at atomic resolution. Science 238:205–208

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Furusho Y, Okoshi K, Tanahara S, Maeda K, Nishino S, Mori T, Yashima E (2006) A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity. Angew Chem Int Ed 45:6491–6495

    Article  CAS  Google Scholar 

  • Izawa H, Kadokawa J (2009) Preparation of functional amylosic materials by phosphorylase-catalyzed polymerization. In: Kadoakwa J (ed) Interfacial researches in fundamental and material sciences of oligo- and polysaccharides. Transworld Research Network, Trivandrum, pp 69–86

    Google Scholar 

  • Izawa H, Nawaji M, Kaneko Y, Kadokawa J (2009) Preparation of glycogen-based polysaccharide materials by phosphorylase-catalyzed chain elongation of glycogen. Macromol Biosci 9:1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Kadoakwa J (2012) Synthesis of amylose-grafted polysaccharide materials by phosphorylase-catalyzed enzymatic polymerization. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, vol 1043. ACS Symposium Series 1105. American Chemical Society, Washington, DC, pp 237–255

    Chapter  Google Scholar 

  • Kadoakwa J (2013) Synthesis of new polysaccharide materials by phosphorylase-catalyzed enzymatic α-glycosylations using polymeric glycosyl acceptors. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: biocatalysis and materials II, vol 1144. ACS Symposium Series 1144. American Chemical Society, Washington, DC, pp 141–161

    Chapter  Google Scholar 

  • Kadokawa J (2011a) Facile synthesis of unnatural oligosaccharides by phosphorylase-catalyzed enzymatic glycosylations using new glycosyl donors. In: Gordon NS (ed) Oligosaccharides: sources, properties and applications. Nova Science Publishers Inc, Hauppauge, pp 269–281

    Google Scholar 

  • Kadokawa J (2011b) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345

    Article  CAS  PubMed  Google Scholar 

  • Kadokawa J (2012) Preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. Polymers 4:116–133

    Article  CAS  Google Scholar 

  • Kadokawa J (2013a) Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization. Biomolecules 3:369–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadokawa J (2013b) Synthesis of non-natural oligosaccharides by α-glucan phosphorylase-catalyzed enzymatic glycosylations using analogue substrates of α-D-glucose 1-phosphate. Trends Glycosci Glycotechnol 25:57–69

    Article  CAS  Google Scholar 

  • Kadokawa J (2014) Chemoenzymatic synthesis of functional amylosic materials. Pure Appl Chem 86:701–709

    Article  CAS  Google Scholar 

  • Kadokawa J (2015a) Chemoenzymatic synthesis of amylose-grafted cellulose derivatives. In: Mondal MIH (ed) Cellulose and cellulose derivatives. Nova Science Publishers Inc, Hauppauge, pp 299–311

    Google Scholar 

  • Kadokawa J (2015b) Enzymatic synthesis of non-natural oligo- and polysaccharides by phosphorylase-catalyzed glycosylations using analogue substrates. In: Cheng HN, Gross RA, Smith PB (eds) Green polymer chemistry: biobased materials and biocatalysis, vol 1192. ACS Symposium Series 1192. American Chemical Society, Washington, DC, pp 87–99

    Chapter  Google Scholar 

  • Kadokawa J (2015c) Hierarchically fabrication of amylosic supramolecular nanocomposites by means of inclusion complexation in phosphorylase-catalyzed enzymatic polymerization field. In: Thakur KV, Thakur KM (eds) Eco-friendly polymer nanocomposites: processing and properties. Springer, New Delhi, pp 513–525

    Google Scholar 

  • Kadokawa J, Kaneko Y (2013) Engineering of polysaccharide materials—by phosphorylase-catalyzed enzymatic chain-elongation. Pan Stanford Publishing Pte Ltd., Singapore

    Google Scholar 

  • Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153

    Article  CAS  PubMed  Google Scholar 

  • Kadokawa J, Kaneko Y, Nakaya A, Tagaya H (2001a) Formation of an amylose-polyester inclusion complex by means of phosphorylase-catalyzed enzymatic polymerization of α-D-glucose 1-phosphate monomer in the presence of poly(ε-caprolactone). Macromolecules 34:6536–6538

    Article  CAS  Google Scholar 

  • Kadokawa J, Kaneko Y, Tagaya H, Chiba K (2001b) Synthesis of an amylose-polymer inclusion complex by enzymatic polymerization of glucose 1-phosphate catalyzed by phosphorylase enzyme in the presence of polythf: a new method for synthesis of polymer-polymer inclusion complexes. Chem Commun, 449–450

    Google Scholar 

  • Kadokawa J, Kaneko Y, Nagase S, Takahashi T, Tagaya H (2002) Vine-twining polymerization: Amylose twines around polyethers to form amylose—polyether inclusion complexes. Chem Eur J 8:3321–3326

    Article  CAS  PubMed  Google Scholar 

  • Kadokawa J, Nakaya A, Kaneko Y, Tagaya H (2003) Preparation of inclusion complexes between amylose and ester-containing polymers by means of vine-twining polymerization. Macromol Chem Phys 204:1451–1457

    Article  CAS  Google Scholar 

  • Kadokawa J, Nomura S, Hatanaka D, Yamamoto K (2013) Preparation of polysaccharide supramolecular films by vine-twining polymerization approach. Carbohydr Polym 98:611–617

    Article  CAS  PubMed  Google Scholar 

  • Kadokawa J, Tanaka K, Hatanaka D, Yamamoto K (2015) Preparation of multiformable supramolecular gels through helical complexation by amylose in vine-twining polymerization. Polym Chem 6:6402–6408

    Article  CAS  Google Scholar 

  • Kaneko Y, Kadokawa J (2005) Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers. Chem Rec 5:36–46

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Kadokawa J (2006) Synthesis of nanostructured bio-related materials by hybridization of synthetic polymers with polysaccharides or saccharide residues. J Biomater Sci Polym Ed 17:1269–1284

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Kadokawa J (2009a) Chemoenzymatic synthesis of amylose-grafted polymers. In: Ito R, Matsuo Y (eds) Handbook of carbohydrate polymers: development, properties and applications. Nova Science Publishers Inc, Hauppauge, pp 671–691

    Google Scholar 

  • Kaneko Y, Kadokawa J (2009b) Preparation of polymers with well-defined nanostructure in the polymerization field. In: Lee JN (ed) Modern trends in macromolecular chemistry. Nova Science Publishers Inc, Hauppauge, pp 199–217

    Google Scholar 

  • Kaneko Y, Matsuda S, Kadokawa J (2007) Chemoenzymatic syntheses of amylose-grafted chitin and chitosan. Biomacromol 8:3959–3964

    Article  CAS  Google Scholar 

  • Kaneko Y, Fujisaki K, Kyutoku T, Furukawa H, Kadokawa J (2010) Preparation of enzymatically recyclable hydrogels through the formation of inclusion complexes of amylose in a vine-twining polymerization. Chem Asian J 5:1627–1633

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Kyutoku T, Shimomura N, Kadokawa J (2011a) Formation of amylose-poly(tetrahydrofuran) inclusion complexes in ionic liquid media. Chem Lett 40:31–33

    Article  CAS  Google Scholar 

  • Kaneko Y, Ueno K, Yui T, Nakahara K, Kadokawa J (2011b) Amylose’s recognition of chirality in polylactides on formation of inclusion complexes in vine-twining polymerization. Macromol Biosci 11:1407–1415

    Article  CAS  PubMed  Google Scholar 

  • Kida T, Minabe T, Okabe S, Akashi M (2007) Partially-methylated amyloses as effective hosts for inclusion complex formation with polymeric guests. Chem Commun, 1559–1561

    Google Scholar 

  • Kitamura S (1996) Starch polymers, natural and synthetic. In: Salamone C (ed) The polymeric materials encyclopedia, synthesis, properties and applications, vol 10. CRC Press, New York, pp 7915–7922

    Google Scholar 

  • Kitamura S, Yunokawa H, Mitsuie S, Kuge T (1982) Study on polysaccharide by the fluorescence method 2. Micro-brownian motion and conformational change of amylose in aqueous-solution. Polym J 14:93–99

    Article  CAS  Google Scholar 

  • Kitaoka M, Hayashi K (2002) Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci Glycotechnol 14:35–50

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kobayashi K, Kamiya S, Enomoto N (1996) Amylose-carrying styrene macromonomer and its homo- and copolymers: synthesis via enzyme-catalyzed polymerization and complex formation with iodine. Macromolecules 29:8670–8676

    Article  CAS  Google Scholar 

  • Kumar K, Woortman AJJ, Loos K (2013) Synthesis of amylose-polystyrene inclusion complexes by a facile preparation route. Biomacromol 14:1955–1960

    Article  CAS  Google Scholar 

  • Lejeune A, Deprez T (2009) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Lenz RW (1993) Biodegradable polymers. Adv Polym Sci 107:1–40

    Article  CAS  Google Scholar 

  • Manners DJ (1991) Recent developments in our understanding of glycogen structure. Carbohydr Polym 16:37–82

    Article  CAS  Google Scholar 

  • Matsuda S, Kaneko Y, Kadokawa J (2007) Chemoenzymatic synthesis of amylose-grafted chitosan. Macromol Rapid Commun 28:863–867

    Article  CAS  Google Scholar 

  • Melton LD, Mindt L, Rees DA (1976) Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydr Res 46:245–257

    Article  CAS  PubMed  Google Scholar 

  • Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  • Nakai H, Kitaoka M, Svensson B, Ohtsubo K (2013) Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 17:301–309

    Article  CAS  PubMed  Google Scholar 

  • Nawaji M, Izawa H, Kaneko Y, Kadokawa J (2008) Enzymatic α-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase. Carbohydr Res 343:2692–2696

    Article  CAS  PubMed  Google Scholar 

  • Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 8:396–400

    Article  CAS  Google Scholar 

  • Nishinari K, Zhang H, Ikeda S (2000) Hydrocolloid gels of polysaccharides and proteins. Curr Opin Colloid Interface Sci 5:195–201

    Article  CAS  Google Scholar 

  • Nomura S, Kyutoku T, Shimomura N, Kaneko Y, Kadokawa J (2011) Preparation of inclusion complexes composed of amylose and biodegradable poly(glycolic acid-co-ε-caprolactone) by vine-twining polymerization and their lipase-catalyzed hydrolysis behavior. Polym J 43:971–977

    Article  CAS  Google Scholar 

  • Ohdan K, Fujii K, Yanase M, Takaha T, Kuriki T (2006) Enzymatic synthesis of amylose. Biocatal Biotransform 24:77–81

    Article  CAS  Google Scholar 

  • Omagari Y, Matsuda S, Kaneko Y, Kadokawa J (2009) Chemoenzymatic synthesis of amylose-grafted cellulose. Macromol Biosci 9:450–455

    Article  CAS  PubMed  Google Scholar 

  • Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur VK (2015) Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review. Int J Biol Macromol 79:449–458

    Article  CAS  PubMed  Google Scholar 

  • Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432

    Article  CAS  Google Scholar 

  • Piculell L (1998) Gelling polysaccharides. Curr Opin Colloid Interface Sci 3:643–650

    Article  CAS  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  • Putseys JA, Lamberts L, Delcour JA (2010) Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci 51:238–247

    Article  CAS  Google Scholar 

  • Rachmawati R, Woortman AJJ, Loos K (2013a) Facile preparation method for inclusion complexes between amylose and polytetrahydrofurans. Biomacromol 14:575–583

    Article  CAS  Google Scholar 

  • Rachmawati R, Woortman AJJ, Loos K (2013b) Tunable properties of inclusion complexes between amylose and polytetrahydrofuran. Macromol Biosci 13:767–776

    Article  CAS  PubMed  Google Scholar 

  • Rachmawati R, Woortman AJJ, Loos K (2014) Solvent-responsive behavior of inclusion complexes between amylose and polytetrahydrofuran. Macromol Biosci 14:56–68

    Article  CAS  PubMed  Google Scholar 

  • Rouilly A, Rigal L (2002) Agro-materials: a bibliographic review. J Macromol Sci Polym Rev C42:441–479

    Article  CAS  Google Scholar 

  • Sarko A, Zugenmaier P (1980) Crystal structures of amylose and its derivatives. In: French AD, Gardner KH (eds) Fiber diffraction methods, vol 141. ACS Symposium Series 141. American Chemical Society, Washington, DC, pp 459–482

    Chapter  Google Scholar 

  • Schuerch C (1986) Polysaccharides. In: Mark HF, Bilkales N, Overberger CG (eds) Encyclopedia of polymer science and engineering, vol 13. 2nd edn. Wiley, New York, pp 87–162

    Google Scholar 

  • Seibel J, Beine R, Moraru R, Behringer C, Buchholz K (2006a) A new pathway for the synthesis of oligosaccharides by the use of non-leloir glycosyltransferases. Biocatal Biotransform 24:157–165

    Article  CAS  Google Scholar 

  • Seibel J, Jordening HJ, Buchholz K (2006b) Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatal Biotransform 24:311–342

    Article  CAS  Google Scholar 

  • Shoda S, Uyama H, Kadokawa J, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413

    Article  CAS  PubMed  Google Scholar 

  • Shogren RL (1993) Complexes of starch with telechelic poly(ε-caprolactone) phosphate. Carbohydr Polym 22:93–98

    Article  CAS  Google Scholar 

  • Shogren RL, Greene RV, Wu YV (1991) Complexes of starch polysaccharides and poly(ethylene-co-acrylic acid)—structure and stability in solution. J Appl Polym Sci 42:1701–1709

    Article  CAS  Google Scholar 

  • Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–2512

    Article  CAS  Google Scholar 

  • Stephen AM, Phillips GO, Williams PA (2006) Food polysaccharides and their applications. Food science and technology, 2nd edn. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  • Takata Y, Yamamoto K, Kadokawa J (2015) Preparation of pH-responsive amphoteric glycogen hydrogels by α-glucan phosphorylase-catalyzed successive enzymatic reactions. Macromol Chem Phys 216:1415–1420

    Article  CAS  Google Scholar 

  • Tanaka T, Fukuhara H, Shoda S, Kimura Y (2013a) Facile synthesis of oligosaccharide-poly(l-lactide) conjugates forming nanoparticles with saccharide core and shell. Chem Lett 42:197–199

    Article  CAS  Google Scholar 

  • Tanaka T, Sasayama S, Nomura S, Yamamoto K, Kimura Y, Kadokawa J (2013b) An amylose-poly(L-lactide) inclusion supramolecular polymer: enzymatic synthesis by means of vine-twining polymerization using a primer-guest conjugate. Macromol Chem Phys 214:2829–2834

    Article  CAS  Google Scholar 

  • Tanaka T, Gotanda R, Tsutsui A, Sasayama S, Yamamoto K, Kimura Y, Kadokawa J (2015a) Synthesis and gel formation of hyperbranched supramolecular polymer by vine-twining polymerization using branched primer-guest conjugate. Polymer 73:9–16

    Article  CAS  Google Scholar 

  • Tanaka T, Tsutsui A, Gotanda R, Sasayama S, Yamamoto K, Kadokawa J (2015b) Synthesis of amylose-polyether inclusion supramolecular polymers by vine-twining polymerization using maltoheptaose-functionalized poly(tetrahydrofuran) as a primer-guest conjugate. J Appl Glycosci 62:135–141

    Article  CAS  Google Scholar 

  • Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  PubMed  Google Scholar 

  • Umegatani Y, Izawa H, Nawaji M, Yamamoto K, Kubo A, Yanase M, Takaha T, Kadokawa J (2012) Enzymatic α-glucuronylation of maltooligosaccharides using α-glucuronic acid 1-phosphate as glycosyl donor catalyzed by a thermostable phosphorylase from Aquifex aeolicus VF5. Carbohydr Res 350:81–85

    Article  CAS  PubMed  Google Scholar 

  • Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK et al (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774

    Article  CAS  Google Scholar 

  • Yanase M, Takaha T, Kuriki T (2006) α-Glucan phosphorylase and its use in carbohydrate engineering. J Sci Food Agric 86:1631–1635

    Article  CAS  Google Scholar 

  • Ziegast G, Pfannemüller B (1987) Linear and star-shaped hybrid polymers. 4. phosphorolytic syntheses with Di-functional, Oligo-Functional and Multifunctional Primers. Carbohyd Res 160:185–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kadokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, T., Kadokawa, Ji. (2018). Gel Formation by Non-covalent Cross-Linking from Amylose Through Enzymatic Polymerization. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_9

Download citation

Publish with us

Policies and ethics