Skip to main content

Polymer Gels: Molecular Design and Practical Application

  • Chapter
  • First Online:
Polymer Gels

Abstract

Polymer gels are worn in our steadily lives for extended wear lenses, superabsorbent polymers, etc., and more fancy applications are in development. They are among the most interesting and functional materials. Gels are characterized as polymers and their swollen matters with three-dimensional chain structures that are insoluble in any solvents. The capacity of polymer gels to experience considerable swelling and crumpling as an element of their surroundings is a standout among the most admirable properties of these materials. Polymer gels ordinarily contain a lot of portion of solvent, which gives them a singular quality started from a fluid nature. Additionally, they can keep up shape like strong materials, unless extra stress is applied. Subsequently, the mix of flexibility and shape maintenance capacity gives special properties, especially mechanical properties. Gels are wet and moldable and resemble a strong material yet are set up for experiencing considerable distortion. This property is as opposed to most modern materials, for example metals, earthenware production, and plastics, which are dry and hard. This chapter focuses on polymer gels in terms of molecular design, assembly, crosslink formations, and practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams N, Schuber US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520

    Article  CAS  PubMed  Google Scholar 

  • Ahn SK, Kasi RM, Kim S-C, Sharmaa N, Zhoub Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151–1157

    Article  CAS  Google Scholar 

  • An Y, Solis FJ, Jiang H (2010) A thermodynamic model of physical gels. J Mech Phys Solids 58:2083–2099

    Article  CAS  Google Scholar 

  • Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical application. Prog Polym Sci 39(9):1644–1667

    Article  CAS  Google Scholar 

  • Arguinzoniz AG, Ruggiero E, Habtemariam A, Hernandez-Gil J, Salassa L, Mareque-Rivas JC (2014) Light harvesting and photoemission by nanoparticles for photodynamic therapy. Part Part Syst Charact 31(1):46–75

    Article  CAS  Google Scholar 

  • Baumgaertel A, Altuntaş E, Kempe K, Crecelius A, Schubert US (2010) Characterization of different poly (2‐oxazoline) block copolymers by MALDI‐TOF MS/MS and ESI‐Q‐TOF MS/MS. J Polym Sci Part A: Polym Chem 48:5533–5540

    Article  CAS  Google Scholar 

  • Baumgaertel A, Weber C, Fritz N, Festag G, Altuntaş E, Kempe K, Hoogenboom R, SchubertU S (2011) Characterization of poly (2-oxazoline) homo-and copolymers by liquid chromatography at critical conditions. J Chromatogr A 1218:8370–8378

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  • Bütün V, Armes SP, Billingham NC (2001) Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42:5993–6008

    Article  Google Scholar 

  • Buwalda SJ, Boere KWM, Dijkstra PJD, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Liu GY, Liu XS, Pang SP, Zhu CS, Lv LP et al (2011) Photo-responsive, biocompatible polymeric micelles self-assembled from hyperbranched polyphosphate-based polymers. Polym Chem 2(6):1389–1397

    Article  CAS  Google Scholar 

  • Constantinou AP, Georgiou TK (2016) Tuning the gelation of thermoresponsive gels. Eur Polymer J 78:366–375

    Article  CAS  Google Scholar 

  • Cortez-Lemus NA, Licea-Claverie A (2016) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51

    Article  CAS  Google Scholar 

  • Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533

    Article  CAS  Google Scholar 

  • EI-Kamel AH, Ashri LY, Alsarra LA (2007) Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases. AAPS PharmSciTech 8(3):184–194

    Article  Google Scholar 

  • Eisele M, Burchard W (1990) Hydrophobic water-soluble polymers, 1. Dilute solution properties of poly(1-vinyl-2-piperidone) and poly(N-vinylcaprolactam). Makromol Chem 191:169–184

    Article  CAS  Google Scholar 

  • El-Ejmi AAS, Huglin MB (1996) Characterization of N, N-dimethylacrylamide/2-methoxyethylacrylate copolymers and phase behaviour of their thermotropic aqueous solutions. Polym Int 39:113–119

    Article  CAS  Google Scholar 

  • Feil H, Bae YH, Feijen J et al (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  • Feng N, Han GX, Dong J, Wu H, Zheng YD, Wang GJ (2014) Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer. J Colloid Interface Sci 421:15–21

    Article  CAS  PubMed  Google Scholar 

  • Feng M, Tian Y, Chang SY, Xu DQ, Shi HJ (2015) Polyethylene-oxide improves microcirculatory blood flow in a murine hemorrhagic shock model. Int J Clin Exp Med 8(4):5931–5936

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  • Gandhi A, Paul A, Sen Q, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10:99–107

    Article  Google Scholar 

  • Guenet JM (2000) Structure versus rheological properties in fibrillar thermoreversible gels from polymers and biopolymers. J Rheol 44:947–960

    Article  CAS  Google Scholar 

  • Halperin A, Kröger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367

    Article  CAS  Google Scholar 

  • Han M, Ishikawa D, Honda T, Ito E, Hara M (2010) Light-driven molecular switches in azobenzene self-assembled monolayers: effect of molecular structure on reversible photoisomerization and stable cis state. Chem Commun 46:3598–3600

    Article  CAS  Google Scholar 

  • Hartlieb M, Pretzel D, Kempe K, Fritzsche C, Paulus RM, Gottschaldt M, Schubert US (2013) Cationic poly(2-oxazoline) hydrogels for reversible DNA binding. Soft Matter 9:4693–4704

    Article  CAS  Google Scholar 

  • Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994

    Article  CAS  Google Scholar 

  • Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schuber US (2008) Tuning the LCST of poly(2-oxazolines) by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide). Chem Commun 5758–5760

    Google Scholar 

  • Jheng PR, Lu KY, Yu SH, Mi FL (2015) Free DOX and chitosan-N-arginine conjugate stabilized indocyanine green nanoparticles for combined chemophotothermal therapy. Colloids Surf B: Biointerfaces 136:402–412

    Article  CAS  PubMed  Google Scholar 

  • Jiang JQ, Tong X, Morris D, Zhao Y (2006) Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39(13):4633–4640

    Article  CAS  Google Scholar 

  • Jochum FD, Theato P (2009) Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction. Polymer 50:3079–3085

    Article  CAS  Google Scholar 

  • Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42(17):7468–7483

    Article  CAS  PubMed  Google Scholar 

  • Kirsh YE, Yanul NA, Kalninsh KK (1999) Structural transformation of water associate interactions in poly-N-vinylcaprolactam-water system. Eur Polym J 35:305–316

    Article  CAS  Google Scholar 

  • Klajn R (2010) Immobilized azobenzenes for the construction of photoresponsive materials. Pure Appl Chem 82:2247–2279

    Article  CAS  Google Scholar 

  • Knoben W, Besseling NAM, Stuart MAC (2007) Rheology of a reversible supramolecular polymer studied by comparison of the effects of temperature and chain stoppers. J Chem Phys 126:024907

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Masuda E, Shoda S, Shimano Y (1989) Synthesis of acryl- and methacryl-type macromonomers and telechelics by utilizing living polymerization of 2-oxazolines. Macromolecules 22:2878–2884

    Article  CAS  Google Scholar 

  • Kuang HH, He HY, Hou J, Xie ZG, Jing XB, Huang YB (2013) Thymine modified amphiphilic biodegradable copolymers for photo-cross-linked micelles as stable drug carriers. Macromol Biosci 13(11):1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Kujawa P, Segui F, Shaban S, Diab C, Okada Y, Tanaka F, Winnik FM (2006) Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules 39:341–348

    Article  CAS  Google Scholar 

  • Kumar S, Allard JF, Morris D, Dory YL, Lepage M, Zhao Y (2012) Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J Mater Chem 22(15):7252–7257

    Article  CAS  Google Scholar 

  • Lau ACW, Wu C (1999) Thermally sensitive and biocompatible poly(N-vinylcaprolactam): synthesis and characterization of high molar mass linear chains. Macromolecules 32:581–584

    Article  CAS  Google Scholar 

  • Li L, Aoki Y (1997) Rheological images of poly(vinyl chloride) Gels. 1. The dependence of Sol–Gel transition on concentation. Macromolecules 30:7835–7841

    Article  CAS  Google Scholar 

  • Lim CK, Heo J, Shin S, Jeong K, Seo YH, Jang HD (2013) Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett 334(2):176–187

    Article  CAS  PubMed  Google Scholar 

  • Lin CP, Sung YC, Hsiue GH (2012) Non-viral pH-sensitive gene carriers based on poly ((2-ethyl-2-oxazoline)-co-ethylenimine)-block-Poly(2-ethyl -2-oxazoline): a study of gene release behavior. J Med Biol Eng 32:365–372

    Article  Google Scholar 

  • Lin YH, Tsai SC, Lai CH, Lee CH, He ZS, Tseng GC (2013) Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 34:4466–4479

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  • Liu G, Liu W, Dong CM (2013) UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem 4(12):3431–3443

    Article  CAS  Google Scholar 

  • Lozinsky VI, Simenel IA, Kurskaya EA, Kulakova VK, Galaev IY, Mattiasson B, Grinberg VY, Girnberg NV, Khokhlov AR (2000) Synthesis of N-vinylcaprolactam polymers in water containing media. Polymer 41:6507–6518

    Article  CAS  Google Scholar 

  • Lu KY, Lin CW, Hsu CH, Ho YC, Chuang EY, Sung HW, Mi FL (2014) FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier. ACS Appl Mater Interfaces 6:18275–18289

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Nakamura T, Ikeda I (2001) Changes in the hydration states of poly(N-alkylacrylamide)s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34:1391–1399

    Article  CAS  Google Scholar 

  • Makhaeva EE, Tenhu H, Khokhlov AR (1998) Conformational changes of poly(N-vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 31:6112–6118

    Article  CAS  Google Scholar 

  • Matsusaki M, Kishida A, Stainton N, Ansell CWG, Akashi M (2001) Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D, L-lactic acid. J Appl Polym Sci 82(10):2357–2364

    Article  CAS  Google Scholar 

  • Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287(3):1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Akiyama Y, Winnik FM, Kataoka K (2004) Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules 37:6786–6792

    Article  CAS  Google Scholar 

  • Paul JF, John RJ (1943) Statistical mechanics of cross-linked polymer networks II. Swelling J Chem Phys 11:521–526

    Article  Google Scholar 

  • Plate NA, Lebedeva TL, Valuev LI (1999) Lower critical solution temperature in aqueous solutions of N-Alkyl-substituted polyacrylamides. Polym J 31:21–27

    Article  CAS  Google Scholar 

  • Podual K, Doyle FJ, Peppas NA (2000) Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J Control Release 67:9–17

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  • Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243

    Article  CAS  PubMed  Google Scholar 

  • Rueda J, Zschoche S, Komber H, Schmaljohann D, Voit B (2005) Synthesis and characterization of thermoresponsive graft copolymers of NIPAAmand 2-alkyl-2-oxazolines by the “grafting from” method. Macromolecules 8:7330–7336

    Article  CAS  Google Scholar 

  • Saeki S, Kuwahara N, Nakata M, Kaneko M (1977) Phase separation of poly(ethylene glycol)-water-salt systems. Polymer 18:1027–1031

    Article  CAS  Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  • Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  PubMed  Google Scholar 

  • Shibu ES, Hamada M, Murase N, Biju V (2013) Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J Photochem Photobiol C-Photochem Rev 15:53–72

    Article  CAS  Google Scholar 

  • Shostakovsky MF, Sidelkovskaya FP, Zelenskaya MG (1952) Synthesis and transformations of N-Vinylcaprolactam. Part 1: polymerization in presence of hydrogen peroxide. Bull Acad Sci USSR Div Chem Sci 4:633–636

    Article  Google Scholar 

  • Siegel RA (2014) Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. J Control Release 190:337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon OF, Corciovei M, Ciuta I, Boghina C (1968) Properties of solutions of poly(N-vinylcaprolactam). J Appl Polym Sci 12:1835–1842

    Article  CAS  Google Scholar 

  • Son S, Shin E, Kim BS (2014) Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 15(2):628–634

    Article  CAS  PubMed  Google Scholar 

  • Su Y-R, Yu S-H, Chao A-C, Wu J-Y, Lin Y-F, Lu K-Y, Mi F-L (2016) Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids Surf A 494:9–20

    Article  CAS  Google Scholar 

  • Susanto H, Samsudin AM, Rokhati N, Widiasa IN (2013) Immobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors. Enzyme Microb Technol 52:386–392

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu D, Fukui K, Aroua S, Yamakoshi Y (2010) Photoswitching tripodal single molecular tip for noncovalent AFM measurement: synthesis, immobilization and reversible configurational change on gold surface. Org Biomol Chem 8:3655–3664

    Article  CAS  PubMed  Google Scholar 

  • Tamada K, Akiyama H, Wei TX, Kim SA (2003) Photoisomerization reaction of unsymmetrical azobenzene disulphide self-assembled monolayers: modification of azobenzene dyes to improve thermal endurance for photoreaction. Langmuir 19:2306–2312

    Article  CAS  Google Scholar 

  • Tang XD, Liang XC, Gao LC, Fan XH, Zhou QF (2010) Water-soluble triply-responsive homopolymers of N, N-dimethylaminoethyl methacrylate with a terminal azobenzene moiety. J Polym Sci Part A-Polym Chem 48(12):2564–2570

    Article  CAS  Google Scholar 

  • Tauhardt L, Frant M, Pretzel D, Hartlieb M, Bücher C, Hildebrand G, Schröter B, Weber C, Kempe K, Gottschaldt M, Liefeithc K, Schubert US (2014) Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications. J Mater Chem B 2:4883–4893

    Article  CAS  Google Scholar 

  • Theato P (2008) Synthesis of well-defined polymeric activated esters. J Polym Sci A: Polym Chem 46:6677–6687

    Article  CAS  Google Scholar 

  • Vihola H, Laukkanen A, Vihola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26(2005):3055–3064

    Article  CAS  PubMed  Google Scholar 

  • Vihola H, Laukkanen A, Tenhu H, Hirvonen J (2008) Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. J Pharm Sci 97:4783–4793

    Article  CAS  PubMed  Google Scholar 

  • Vogt AP, Sumerlin BS (2009) Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 5:2347–2351

    Article  CAS  Google Scholar 

  • Wang CH, Hsiue GH (2002) Synthesis and characterization of temperature- and pH-sensitive hydrogels based on poly(2-ethyl-2-oxazoline) and poly(D, L-lactide). J Polym Sci Part A: Polym Chem 40:1112–1121

    Article  CAS  Google Scholar 

  • Wang X, Qiu X, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31:2972–2976

    Article  CAS  Google Scholar 

  • Wang B, Chen KF, Yang RD, Yang F, Liu J (2014) Stimulus-responsive polymeric micelles for the light-triggered release of drugs. Carbohydr Polym 103:510–519

    Article  CAS  Google Scholar 

  • Weber C, Becer CR, Hoogenboom R, Schuber UC (2009) Lower critical solution temperature behavior of comb and graft shaped poly[oligo(2-ethyl-2-oxazoline)methacrylates. Macromolecules 42:2965–2971

    Article  CAS  Google Scholar 

  • Xia Y, Burke NAD, Stoever DH (2006) End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39:2275–2283

    Article  CAS  Google Scholar 

  • Xiao Y, Gong T, Jiang Y, Wang Y, Wen ZT, Zhou S, Bao C, Xu X (2016) Fabrication and characterization of a glucose-sensitive antibacterial chitosan–polyethylene oxide hydrogel. Polymer 82:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshihito O, Jian-Ping G (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837

    Article  Google Scholar 

  • You J, Almeda D, Ye GJC, Auguste DT (2010a) Bioresponsive matrices in drug delivery. J Biol Eng 4(5):1–12

    Google Scholar 

  • You J, Shao RP, Wei X, Gupta S, Li A (2010b) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6:1022–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Yu YY, Tian F, Wei C, Wang CC (2009) Facile synthesis of triple-stimuli (photo/pH/thermo) responsive copolymers of 2-diazo-1,2-naphthoquinone-mediated poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide). J Polym Sci Part A-P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vicente de Oliveira Sousa Neto or Ronaldo Ferreira do Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Sousa Neto, V., Teixeira, R.N.P., Saraiva, G.D., do Nascimento, R.F. (2018). Polymer Gels: Molecular Design and Practical Application. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_2

Download citation

Publish with us

Policies and ethics