Polymer Gels pp 111-123 | Cite as

Polymer Gel Composites for Bio-Applications

Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Current trends in bio-applications of polymer gel composites consist in the use of composites made by embedding of different types of micro- and/or nanoparticles into polymer gel matrices. The obtained complex system must provide a very attractive material that, due to its specific property and low toxicity, is recommended in versatile domain uses. On the other hand, cross-linked polymeric gels possess properties that make them suitable for different biomedical applications, due to their similarity to natural living tissue and inherent biocompatibility, attributed in part to their flexible and soft nature, and high water content, as well. Development of gel composites with good response properties and controllability contributes to significant advances in biomedical applications, especially cancer therapy, tissue engineering, food industry, and magnetic hyperthermia.

Keywords

Polymer gel Composite Biomedical applications Magnetic gels 

References

  1. Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2008) Alginates as biomaterials in tissue engineering. Carbohydr Chem 37:227–258CrossRefGoogle Scholar
  2. Andersson O, Larsson A, Ekbald T, Liedberg B (2009) Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study. Biomacromolecules 10:142–148CrossRefGoogle Scholar
  3. Ang KL, Venkatraman S, Ramanujan RV (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng, C 27:347–351CrossRefGoogle Scholar
  4. Bassik N, Abebec BT, Laflin KE, Gracias DH (2010) Photolithographically patterned smart hydrogel based bilayer actuators. Polym Commun 51:6093–6098CrossRefGoogle Scholar
  5. Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G (2004) Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41:159–166Google Scholar
  6. Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28:3478–3488CrossRefGoogle Scholar
  7. Bratskaya S, Schwarz S, Petzold G, Liebert T, Heinze T (2006) Cationic starches of high degree of functionalization: 12. Modification of cellulose fibers toward high filler technology in papermaking. Ind Eng Chem Res 45:7374–7379CrossRefGoogle Scholar
  8. Bromley E, Krebs M, Donald A (2006) Mechanisms of structure formation in particulate gels of b-lactoglobulin formed near the isoelectric point. Eur Phys J Part E 21:145–152CrossRefGoogle Scholar
  9. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915CrossRefGoogle Scholar
  10. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  11. Draget KI, Skjåk-Bræk G, Stokke BT (2006) Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocolloids 20:170–175CrossRefGoogle Scholar
  12. Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperth 29:790–800CrossRefGoogle Scholar
  13. Fernández Farrés I, Norton IT (2014) Formation kinetics and rheology of alginate fluid gels produced by in-situ calcium release. Food Hydrocolloids 40:76–84CrossRefGoogle Scholar
  14. Fernández Farrés I, Douaire M, Norton IT (2013) Rheology and tribological properties of Ca-alginate fluid gels produced by diffusion-controlled method. Food Hydrocolloids 32:115–122CrossRefGoogle Scholar
  15. Ferreira P, Coelho JFJ, Almeida JF, Gil MH (2009) Photocrosslinkable polymers for biomedical applications. In: Fazel R (ed) Biomedical engineering—frontiers and challenges. InTech, Rijeka, Croatia, pp 55–74Google Scholar
  16. Ganesh NS, Bharathi G, Jayanthi C, Hanumanthachar J (2014) Comparative evaluation of wax incorporated alginate and pectinate gel beads of Metformin. Der Pharmacia Lettre 6:10–16Google Scholar
  17. Gao D, Xu H, Philbert MA, Kopelman R (2008) Bio-eliminable nano-hydrogels for drug delivery. Nano Lett 8:3320–3324CrossRefGoogle Scholar
  18. Garrec DA, Norton IT (2012) Understanding fluid gel formation and properties. J Food Eng 112:175–182CrossRefGoogle Scholar
  19. Ghosh S, Cai T, Mitra SG, Neogi A, Hu Z, Mills N (2008) Multifunctional magnetic hydrogels with polyethylene glycol-derivative colloidal nanospheres for drug delivery and hyperthermia applications. NSTI-Nanotech 2:708–710Google Scholar
  20. Gilchrist RK (1957) Selective inductive heating of lymph. Annal Surgery 146:596–606CrossRefGoogle Scholar
  21. Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12CrossRefGoogle Scholar
  22. Horkay F, Magda J, Alcoutlabi M, Atzet S, Zarembinski T (2010) Structural, mechanical and osmotic properties of injectable hyaluronan-based composite hydrogels. Polymer 51:4424–4430CrossRefGoogle Scholar
  23. Ikeo Y, Aoki K, Kishi H, Matsuda S, Murakami A (2006) Nano clay reinforced biodegradable plastics of PCL starch blends. Polym Adv Technol 17:940–944CrossRefGoogle Scholar
  24. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6:1–10CrossRefGoogle Scholar
  25. Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225:118–126CrossRefGoogle Scholar
  26. Kai WH, He Y, Asakawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94:2466–2474CrossRefGoogle Scholar
  27. Lao LL, Ramanujan RV (2004) Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med 1061–1064Google Scholar
  28. Lee SY, Cho MS, Nam JD, Lee Y (2006) Melting processing of biodegradable cellulose diacetate/starch composites. Macromol Symp 242:126–130CrossRefGoogle Scholar
  29. Lee W, Choi D, Lee Y, Kim DN, Park J, Koh WG (2008) Preparation of micropatterned hydrogel substrate via surface graft polymerization combined with photolithography for biosensor application. Sens Actuators B Chem 129:841–849CrossRefGoogle Scholar
  30. Liu CX, Bai RB (2005) Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. J Membr Sci 267:68–77CrossRefGoogle Scholar
  31. Liu TV, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647CrossRefGoogle Scholar
  32. Meenach SA, Shapiro JM, Hilt JZ, Anderson KW (2013) Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J Biomater Sci Polym Ed 24:1112–1126CrossRefGoogle Scholar
  33. Moakes RJA, Sullo A, Norton IT (2015) Preparation and characterisation of whey protein fluid gels: The effects of shear and thermal history. Food Hydrocolloids 45:227–235CrossRefGoogle Scholar
  34. Moller S, Weisser J, Bischoff S, Schnabelrauch M (2007) Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomol Eng 24:496–504CrossRefGoogle Scholar
  35. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165CrossRefGoogle Scholar
  36. Norton AB, Hancocks RD, Grover LM (2014) Poly (vinyl alcohol) modification of low acyl gellan hydrogels for applications in tissue regeneration. Food Hydrocolloids 42:373–377CrossRefGoogle Scholar
  37. Norton IT, Frith WJ, Ablett S (2006) Fluid gels, mixed fluid gels and satiety. Food Hydrocolloids 20:229–239CrossRefGoogle Scholar
  38. Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur VK (2015) Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review. Int J Biol Macromol 79:449–458CrossRefGoogle Scholar
  39. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci, Part A 53(7):424–432CrossRefGoogle Scholar
  40. Ramanujan RV, Ang KL, Venkatraman S (2009) Magnet-PNIPA hydrogels for bioengineering applications. J Mater Sci 44:1381–1387CrossRefGoogle Scholar
  41. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712CrossRefGoogle Scholar
  42. Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581CrossRefGoogle Scholar
  43. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430CrossRefGoogle Scholar
  44. Rinaudo M (2014) Biomaterials based on a natural polysaccharide: alginate. TIP Rev Esp Cienc Quím Biol 17:92–96Google Scholar
  45. Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, González-Carreño T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys Part D: Appl Phys 42:224002CrossRefGoogle Scholar
  46. Rokstad AB, Brekke OL, Steinkjer B, Ryan L, Kollarikova G, Strand BL, Skjak-Braek G, Lacik I, Espevik T, Mollnes TE (2011) Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a humand whole blood model. Acta Biomater 7:2566–2578CrossRefGoogle Scholar
  47. Rottensteiner U, Sarker B, Heusinger D, Dafinova D, Rath SN, Beier JP, Kneser U, Horch RE, Detsch R, Boccaccini AR, Arkudas A (2014) In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials 7:1957–1974CrossRefGoogle Scholar
  48. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244CrossRefGoogle Scholar
  49. Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348CrossRefGoogle Scholar
  50. Smith AM, Shelton RM, Perrie Y, Harris JJ (2007) An initial evaluation of gellan gum as a material for tissue engineering applications. J Biomater Appl 22:241–254CrossRefGoogle Scholar
  51. Ström A, Williams MA (2003) Controlled calcium release in the absence and presence of an ion-binding polymer. J Phys Chem B 107:10995–10999CrossRefGoogle Scholar
  52. Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90CrossRefGoogle Scholar
  53. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefGoogle Scholar
  54. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics and therapy. Acc Chem Res 44:842–852CrossRefGoogle Scholar
  55. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  56. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefGoogle Scholar
  57. Veriter S, Mergen J, Goebbels RM, Aouassar N, Gregoire C, Jordan B, Leveque P, Gallez B, Gianello P, Dufrane D (2010) In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation. Tissue Eng Part A 16:1503–1513CrossRefGoogle Scholar
  58. Weisel JW (2007) Structure of fibrin: impact on clot stability. J Thromb Haemost 5(Suppl. 1):116–124CrossRefGoogle Scholar
  59. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Biores Technol 100:2569–2574CrossRefGoogle Scholar
  60. Zamora-Mora V, Soares PIP, Echeverria C, Hernández R, Mijangos C (2015) Composite chitosan/agarose ferrogels for potential applications in magnetic hyperthermia. Gels 1:69–80CrossRefGoogle Scholar
  61. Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108:67–72CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations