Polymer Gels pp 341-359 | Cite as

Thermo-intelligent Injectable Implants: Intricate Mechanisms and Therapeutic Applications

Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

The importance, influence and effectiveness of thermo-intelligent systems are evident from the fact that thermo-induced bioactive and biointeractive therapy features among the only two stimuli-responsive systems undergoing clinical trials. This chapter provides a detailed mechanistic account of the most widely used thermosensitive polymers such as chitosan-β-glycerophosphate, poly(ethylene glycol)-g-chitosan, methylcellulose, Pluronics, amphiphilic poly(ethylene glycol)/polyhydroxy acids block copolymers and poly(N-isopropylacrylamide). The inherent thermogelling mechanisms governing these specialized injectable implants include, but not limited to, attractive and repulsive interchain interactions, formation of dehydrated hydrophobic architectures, steep decline in the mobility of the polymeric side chains, creation of reversible crosslinking loci, creation of highly stabilized hydrophobically crosslinked networks, lattice restructuring, decrease in critical micelle concentration, advent of frictional forces between the copolymer micelles, entropy change from gauche state to antistate, increase in the volume fraction of micelles and chain collapse before aggregation followed by polymer scattering. Additionally, the chapter evaluates the behaviour and integration of injectable thermogelling systems towards the fabrication and development of therapeutic paradigms. Furthermore, the combinatorial stigmergy of multiplatform multi-responsive conjugated systems is proposed as an alternative and futuristic approach.

Keywords

Thermoresponsive Thermosensitive Thermogels Hydrogels Injectable Thermogelation mechanism Drug delivery Polymers Implant 

Notes

Financial and Competing Interests Disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties. No writing assistance was utilized in the production of this manuscript.

References

  1. Akash MSH, Rehman K, Li N, Gao JQ, Sun H, Chen S (2012) Sustained delivery of IL-1Ra from pluronic F127-based thermosensitive gel prolongs its therapeutic potentials. Pharm Res 29:3475–3485CrossRefGoogle Scholar
  2. Aliaghaie M, Mirzadeh H, Dashtimoghadam E, Taranejoo S (2012) Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application. Soft Matter 8:7128–7137CrossRefGoogle Scholar
  3. Arvidson SA, Lott JR, McAllister JW, Zhang J, Bates FS, Lodge TP (2013) Interplay of phase separation and thermoreversible gelation in aqueous methylcellulose solutions. Macromolecules 46:300–309CrossRefGoogle Scholar
  4. Bhattarai N, Matsen FA, Zhang M (2005a) PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol Biosci 5:107–111CrossRefGoogle Scholar
  5. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005b) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Rel 103:609–624CrossRefGoogle Scholar
  6. Bikram M, West JL (2008) Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 5(10):1077–1091CrossRefGoogle Scholar
  7. Bodvik R, Dedinaite A, Karlson L, Bergstrom M, Baverback P, Pedersen JS, Edward K, Karlsson G, Varga I, Claesson PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloid Surf A: Physicochem Eng Aspects 354:162–171CrossRefGoogle Scholar
  8. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37:659–685CrossRefGoogle Scholar
  9. Chen X, Zhi F, Jia X, Zhang X, Ambardekar R, Meng Z, Paradkar AR, Hu Y, Yang Y (2013) Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. J Pharm Pharmacol 65:807–816CrossRefGoogle Scholar
  10. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39–47CrossRefGoogle Scholar
  11. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRefGoogle Scholar
  12. Cho J, Heuzey MC, Begin A, Carreau PJ (2005) Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules 6:3267–3275CrossRefGoogle Scholar
  13. Ganji F, Abdekhodaie MJ (2008) Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr Polym 74:435–441CrossRefGoogle Scholar
  14. Gong CY, Shi S, Wu L, Yang B, Qi XR, Guo G, Gu YC, Zhao X, Wei YQ, Qian ZY (2009) Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: sol–gel–sol transition and drug delivery behaviour. Acta Biomater 5:3358–3370CrossRefGoogle Scholar
  15. Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22:161–173CrossRefGoogle Scholar
  16. Hirren M, Desbrières J, Rinaudo M (1996) Physical properties of methylcelluloses in relation with the conditions for cellulose modification. Carbohydr Polym 31:243–252CrossRefGoogle Scholar
  17. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162CrossRefGoogle Scholar
  18. Jiang G, Sun J, Ding F (2014) PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release. J Biomater Sci Polym Ed 25(3):241–256CrossRefGoogle Scholar
  19. Kato T, Yokoyama M, Takahashi A (1978) Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels. Colloid Polym Sci 256:15–21CrossRefGoogle Scholar
  20. Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y (2010) A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31:4157–4166CrossRefGoogle Scholar
  21. Kim JK, Won YW, Lim KS, Kim YH (2012) Low-molecular-weight methylcellulose-based thermo-reversible gel/pluronic micelle combination system for local and sustained docetaxel delivery. Pharm Res 29:525–534CrossRefGoogle Scholar
  22. Kobayashi K, Huang C, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077CrossRefGoogle Scholar
  23. Kumar P, Choonara YE, Modi G, Naidoo D, Pillay V (2014) Nanoparticulate strategies for the 5 R’s of traumatic spinal cord injury intervention: restriction, repair, regeneration, restoration and reorganization. Nanomedicine 9(2):331–348CrossRefGoogle Scholar
  24. Kumar P, Choonara YE, Modi G, Naidoo D, Pillay V (2015) Multifunctional therapeutic delivery strategies for effective neuro-regeneration following traumatic spinal cord injury. Curr Pharm Des 21:1517–1528CrossRefGoogle Scholar
  25. Li W, Li J, Gao J, Li B, Xia Y, Meng Y, Yu Y, Chen H, Dai J, Wang H, Guo Y (2011) The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 32:3832–3844CrossRefGoogle Scholar
  26. Li N, Yu M, Deng L, Yang J, Dong A (2012) Thermosensitive hydrogel of hydrophobically-modified methylcellulose for intravaginal drug delivery. J Mater Sci: Mater Med 23:1913–1919Google Scholar
  27. Li C, Ren S, Dai Y, Tian F, Wang X, Zhou S, Deng S, Liu Q, Zhao J, Chen X (2014) Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/β-glycerophosphate hydrogel loaded with docetaxel. AAPS Pharm Sci Tech 15(2):417–424CrossRefGoogle Scholar
  28. Lima AC, Song W, Blanco-Fernandez B, Alvarez-Lorenzo C, Mano JF (2011) Synthesis of temperature-responsive dextran-ma/pnipaam particles for controlled drug delivery using superhydrophobic surfaces. Pharm Res 28:1294–1305CrossRefGoogle Scholar
  29. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefGoogle Scholar
  30. Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M (2006) Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Rel 115:46–56CrossRefGoogle Scholar
  31. Park S, Kim HS, Kim WJ, Yoo HS (2012) Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness. Int J Pharm 424:107–114CrossRefGoogle Scholar
  32. Payyappilly S, Dhara S, Chattopadhyay S (2014) Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J Biomed Mater Res Part A 102(5):1500–1509CrossRefGoogle Scholar
  33. Peng Q, Sun X, Gong T, Wu CY, Zhang T, Tan J, Zhang ZR (2013) Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater 9:5063–5069CrossRefGoogle Scholar
  34. Qian J, Wu F (2013) Thermosensitive PNIPAM semi-hollow spheres for controlled drug release. J Mater Chem B 1:3464–3469CrossRefGoogle Scholar
  35. Rassing J, Attwood D (1983) Ultrasound velocity and light scattering studies on the polyoxyethylene–polyoxypropylene copolymer Pluronic F127 in aqueous solution. Int J Pharm 13:47–55CrossRefGoogle Scholar
  36. Rassing J, Mckenna W, Bandyopadhyay S, Eyring EM (1984) Ultrasonic and 13C-NMR studies on gel formation in aqueous solution of ABA block copolymeric Pluronic F-127. J Mol Liq 27:165–178Google Scholar
  37. Ruel-Gariepy E, Chenite A, Chaput C, Guirguis S, Leroux J (2000) Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 203:89–98CrossRefGoogle Scholar
  38. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  39. Tanaka F, lshida M (1995) Thermoreversible gelation of hydrated polymers. J Chem Soc Faraday Trans 91(16):2663–2670Google Scholar
  40. Trongsatitkul T, Budhlall BM (2013) Temperature dependence of serum protein adsorption in PEGylated PNIPAm microgels. Colloid Surf B: Biointerfaces 103:244–252CrossRefGoogle Scholar
  41. Vadnere M, Amidon G, Lindenbaum S, Haslam JL (1984) Thermodynamic studies on the gel–sol transition of some Pluronic polyol. Int J Pharm 22:207–218CrossRefGoogle Scholar
  42. Wang W, Deng L, Liu S, Li X, Zhao X, Hu R, Zhang J, Han H, Dong A (2012) Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. Acta Biomater 8:3963–3973CrossRefGoogle Scholar
  43. Wei X, Lv X, Zhao Q, Qiu L (2013) Thermosensitive b-cyclodextrin modified poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles prolong the anti-inflammatory effect of indomethacin following local injection. Acta Biomater 9:6953–6963CrossRefGoogle Scholar
  44. Yang XL, Luo YL, Xu F, Chen YS (2014) Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behaviour. Pharm Res 31:291–304CrossRefGoogle Scholar
  45. Zhang L, He Y, Ma G, Song C, Sun H (2012) Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomed: Nanotechnol Biol Med 8:925–934Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pradeep Kumar
    • 1
  • Yahya E. Choonara
    • 1
  • Viness Pillay
    • 1
  1. 1.Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health SciencesSchool of Therapeutic Sciences, University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations