Polymer Gels pp 285-310 | Cite as

Emerging Trends of Organogels in Drug Chemistry

Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Organogels are one of the major constituents in class of gels. They show three-dimensional and cross-linked network in organic liquid phase. Organogels are non-glassy thermoplastic solid materials and are non-crystalline and viscoelastic in nature. Despite of the liquid composition, some differences are seen in the morphological appearance of solids and the rheological behavior. These organogel systems have specific molecular requirements like gelation, depending on the physical and fiber interactions. Organogels are grown rapidly with more stability than other gels and also have features like moisture intensive, economic. Also, organogels are having lower hydration polymeric or low molecular weight of organogelators compared to other polymers. In general, organogels are thermodynamically stable in nature and utilized mainly for drug delivery of bioactive agents in scarce toxicology. Over the decades, organogels are having tremendous applications in various fields like pharmaceuticals, cosmetics, art conservation, and food. This chapter comprises of recent research work on organogels, its preparation, properties, characteristic parameters and various applications in different industries.

Keywords

Organogel polymer Gel preparations Gel application 

References

  1. Abdallah DJ, Sirchio S, Weiss R (2000) Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 16(20):7558–7561CrossRefGoogle Scholar
  2. Aboofazeli R, Zia H, Needham TE (2002) Transdermal delivery of Nicardipine: an approach to in vitro permeation enhancement. Drug Delivery 9(4):239–247CrossRefGoogle Scholar
  3. Aliotta F, Vasi C, Lechner RE, Ruffle B (2000) Evidence of percolative phenomena in a lecithin-based gel. Physica B: Condens Matter 276–278:347–348CrossRefGoogle Scholar
  4. Angelico R, Ceglie A, Colafemmina G, Lopez F, Murgia S, Olsson U, Palazzo G (2004) Biocompatible Lecithin organogels: structure and phase equilibria. Langmuir 21(1):140–148CrossRefGoogle Scholar
  5. Angelico R, Palazzo G, Colafemmina G (1998) Water diffusion and headgroup mobility in polymer-like reverse micelles: evidence of a sphere-to-rod-to-sphere transition. J Phys Chem B 102(16):2883–2889CrossRefGoogle Scholar
  6. Avramiotis S, Avramiotis S, Papadimitriou V, Hatzara E, Bekiari V, Lianos P, Xenakis A (2007) Lecithin organogels used as bioactive compounds carriers. A microdomain properties investigation. Langmuir 23(8):4438–4447CrossRefGoogle Scholar
  7. Bastiat G, Plourde F, Motulsky A, Furtos A, Dumont Y, Quirion R, Fuhrmann G, Leroux JC (2010) Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease. Biomaterials 31(23):6031–6038CrossRefGoogle Scholar
  8. Belgamwar V, Almeida H, Amaral MH, Lobão P, Lobo JM (2008) Pluronic lecithin organogel. Asian J Pharm 2(3):134–138CrossRefGoogle Scholar
  9. Bhatnagar S, Vyas S (1994) Organogel-based system for transdermal delivery of propranolol. J Microencapsul 11(4):431–438CrossRefGoogle Scholar
  10. Bonina FP, Montenegroa L, Scrofania N, Espositob E, Cortesib R, Menegattib E, Nastruzz C (1995) Effects of phospholipid based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. J Controlled Release 34(1):53–63CrossRefGoogle Scholar
  11. Capitani D, Segre AL, Dreher F, Walde P, Luisi PL (1996) Multinuclear NMR investigation of phosphatidylcholine organogels. J Phys Chem 100(37):15211–15217CrossRefGoogle Scholar
  12. Carretti E, Dei L, Weiss R (2005) Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter 4(2):17–22CrossRefGoogle Scholar
  13. Chen Z, Prof F, Yang H, Yi T, Huang C (2007) A thermostable and long-term-stable ionic-liquid-based gel electrolyte for efficient dye-sensitized solar cells. ChemPhysChem 8(9):1293–1297CrossRefGoogle Scholar
  14. Dasgupta D, Srinivasan S, Rochas C, Ajayaghosh A, Guenet J (2009) Hybrid thermoreversible gels from covalent polymers and organogels. Langmuir 25(15):8593–8598CrossRefGoogle Scholar
  15. Díaz D, Tellado J, Velázquez D, Ravelo A (2008) Polymer thermoreversible gels from organogelators enabled by [‘click’] chemistry. Tetrahedron Lett 49(8):1340–1343CrossRefGoogle Scholar
  16. Dreher F, Walde P, Luisi PL, Elsner P (1995) Human skin irritation of a soybean lecithin microemulsion gel and of liposomes. Proc Controlled Release Soc 22:640–641Google Scholar
  17. Dreher F, Walde P, Luisi PL, Elsner P (1996) Human skin irritation studies of a lecithin microemulsion gel and of lecithin liposomes. Skin Pharmacol 9(2):124–129CrossRefGoogle Scholar
  18. Dreher F, Waldea P, Waltherb P, Wehrlib E (1997) Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Controlled Release 45(2):131–140Google Scholar
  19. Engelkamp H, Middelbeek S, Nolte RJ (1999) Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 284(5415):785–788CrossRefGoogle Scholar
  20. Esch J, Feringa B (2000) New functional materials based on self-assembling organogels: from serendipity towards design13. Angew Chem Int Ed 39(13):2263–2266CrossRefGoogle Scholar
  21. Esch J, Schoonbeek F, Loos MD, Veen EM, Kellogg RM, Feringa BL (1999) Low molecular weight gelators for organic solvents. Supramol Sci: Where it is and Where it is Going 6(3):233–259Google Scholar
  22. Fages F (2005) Low molecular mass gelators: design, self-assembly, function topics in current chemistry. 256(2):7–5. Germany: Springer Berlin HeidelbergGoogle Scholar
  23. Ferry JD (1980) Viscoelastic properties of polymers. 3rd edn. Wiley, New YorkGoogle Scholar
  24. Fujii M, Shiozawa K, Henmi T, Yamanouchi S, Suzuki H, Yamashita N, Matsumot M (1996) Skin permeation of indomethacin from gel formed by fatty-acid ester and phospholipid. Int J Pharm 137(1):117–124CrossRefGoogle Scholar
  25. Garner C, Terech P, Allegraud J, Mistrot B, Nguyen P, Geyer A, Rivera D (1998) Thermoreversible gelation of organic liquids by arylcyclohexanol derivatives: synthesis and characterisation of the gels. J Chem Soc, Faraday Trans 94:7–9CrossRefGoogle Scholar
  26. Guenet J-M (2006) Microfibrillar networks: polymer thermoreversible gels versus organogels. Macromol Symp 241(1):45–50CrossRefGoogle Scholar
  27. Hadgraft J (1999) Passive enhancement strategies in topical and transdermal drug delivery. Int J Pharm 184(1):1–6CrossRefGoogle Scholar
  28. Hadidi N, Nazari N, Aboofazeli R (2009) Formulation and optimization of microemulsion-based organogels containing propranolol hydrochloride using experimental design methods. DARU 17(3)Google Scholar
  29. Haering G, Luisi PL (1986) Hydrocarbon gels from water-in-oil microemulsions. J Phys Chem 90(22):5892–5895CrossRefGoogle Scholar
  30. Hoffman SB, Yoder AR, Trepanier LA (2002) Bioavailability of transdermal methimazole in a pluronic lecithin organogel (PLO) in healthy cats. J Vet Pharmacol Ther 25(3):189–193CrossRefGoogle Scholar
  31. Kang L, Liu XY, Sawant PD, Ho PC, Chan YW, Chan SY (2005) SMGA gels for the skin permeation of haloperidol. J Controlled Release 106(1–2):88–98CrossRefGoogle Scholar
  32. Kantaria S, Rees GD, Lawrence MJ (2003) Formulation of electrically conducting microemulsion-based organogels. Int J Pharm 250(1):65–83CrossRefGoogle Scholar
  33. Kantaria S, Rees G, Lawrence M (1999) Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J Controlled Release 60(2–3):355–365CrossRefGoogle Scholar
  34. Kumar R, Katare P (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS Pharm Sci Tech 6(2):E298–E310CrossRefGoogle Scholar
  35. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRefGoogle Scholar
  36. Lim PFC, Lim PF, Liu XY, Kang L, Ho PC, Chan YW, Chan SY (2006) Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm 311(1–2):157–164CrossRefGoogle Scholar
  37. Lim P, Liu XY, Kang L, Ho PC, Chan YW, Chan SY (2008) Physicochemical effects of terpenes on organogel for transdermal drug delivery. Int J Pharm 358(1–2):102–107CrossRefGoogle Scholar
  38. Liu H, Wang Y, Han F, Yao H, Li S (2007) Gelatin-stabilised microemulsion-based organogels facilitates percutaneous penetration of Cyclosporin A and dermal pharmacokinetics. J Pharm Sci 96(11):3000–3009CrossRefGoogle Scholar
  39. Luisi PL, Scartazzini R, Haering G, Schurtenberger P (1990) Organogels from water-in-oil microemulsions. Colloid Polym Sci 268(4):356–374CrossRefGoogle Scholar
  40. Malik S, Maji S, Banerjee A, Nandi A (2002) A synthetic tripeptide as organogelator: elucidation of gelation mechanism. J Chem Soc Perkin Trans 2:1177–1186CrossRefGoogle Scholar
  41. Mayer J, Wagner R, Taeymans O (2010) Advanced diagnostic approaches and current management of thyroid pathologies in Guinea pigs. Vet Clin North Am: Exotic Anim Pract 13(3):509–523Google Scholar
  42. Moniruzzaman M, Sahin A, Winey K (2009) Improved mechanical strength and electrical conductivity of organogels containing carbon nanotubes. Carbon 47(3):645–650CrossRefGoogle Scholar
  43. Motulsky A, Lafleur M, Couffin-Hoarau AC, Hoarau D, Boury F, Benoit JP, Leroux JC (2005) Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 26(31):6242–6253CrossRefGoogle Scholar
  44. Murdan S (2005) A review of pluronic lecithin organogel as a topical and transdermal drug delivery system. Hospital Pharmacist 12(7):267–270Google Scholar
  45. Murdan S, Andrýsek T, Son D (2005) Novel gels and their dispersions—oral drug delivery systems for ciclosporin. Int J Pharm 300(1–2):113–124CrossRefGoogle Scholar
  46. Murdan S, Gregoriadis G, Florence AT (1996) Non-ionic surfactant based organogels incorporating niosomes. STP Pharm Sci 6(1):44–48Google Scholar
  47. Murdan S, Gregoriadis G, Florence AT (1999a) Interaction of a nonionic surfactant based organogel with aqueous media. Int J Pharm 180(2):211–214CrossRefGoogle Scholar
  48. Murdan S, Gregoriadis G, Florence A (1999b) Sorbitan monostearate/polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens. Eur J Pharm Sci 8(3):177–185CrossRefGoogle Scholar
  49. Murdan S, Gregoriadis G, Florence A (1999c) Novel sorbitan monostearate organogels. J Pharm Sci 88(6):608–614CrossRefGoogle Scholar
  50. Murdan S, van den Bergh B, Gregoriadis G, Florence AT (1999d) Water-in-sorbitan monostearate organogels (water-in-oil gels). J Pharm Sci 88(6):615–619CrossRefGoogle Scholar
  51. Nasseria A, Aboofazelib R, Zia H, Needhama T (2003) Lecithin—stabilized microemulsion—based organogels for topical application of Ketorolac Tromethamine. II. In vitro release study. Iran J Pharm Res 2:117–123Google Scholar
  52. Nastruzzi C (1994) antitumor activity of (Trans) dermally delivered aromatic tetra-amidines. J Controlled Release 29(1–2):53–62CrossRefGoogle Scholar
  53. Pal K, Banthia A, Majumdar D (2006a) Preparation of novel pH-sensitive hydrogels of carboxymethyl cellulose acrylates: a comparative study. Mater Manuf Processes 21(8):877–882CrossRefGoogle Scholar
  54. Pal K, Banthia A, Majumdar D (2006b) Polyvinyl alcohol-gelatin patches of salicylic acid: preparation, characterization and drug release studies. J Biomater Appl 0885328206056312Google Scholar
  55. Pal K, Banthia A, Majumdar D (2007) Biomedical evaluation of polyvinyl alcohol–gelatin esterified hydrogel for wound dressing. J Mater Sci: Mater Med 18(9):1889–1894Google Scholar
  56. Pal K, Banthia A, Majumdar D (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218CrossRefGoogle Scholar
  57. Pal K, Banthia A, Majumdar D (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12:197–220CrossRefGoogle Scholar
  58. Plourde F, Motulsky A, Couffin-Hoarau A, Hoarau D, Ong H, Leroux J (2005) First report on the efficacy of L-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs. J Controlled Release 108(2–3):433–441CrossRefGoogle Scholar
  59. Santos P, Watkinson AC, Hadgraft J, Lane ME (2008) Application of microemulsions in dermal and transdermal drug delivery. J Pharmacol Biophys Res 21(5):246–259Google Scholar
  60. Sawant PD, Liu X (2002) Formation and novel thermomechanical processing of biocompatible soft materials. Chem Mater 14(9):3793–3798CrossRefGoogle Scholar
  61. Scartazzini R, Luisi R (1988) Organogels from lecithins. J Phys Chem 92(3):829–833CrossRefGoogle Scholar
  62. Schurtenberger P, Peng Q, Leser ME, Luisi PL (1993) Structure and phase behavior of lecithin-based microemulsions: a study of the chain length dependence. J Colloid Interface Sci 156(1):43–51CrossRefGoogle Scholar
  63. Schurtenberger P, Scartazzini R, Magid JL, Leser ME, Luisi PL (1990) Structural and dynamic properties of polymer-like reverse micelles. J Phys Chem 94(9):3695–3701CrossRefGoogle Scholar
  64. Shchipunov YA, Dürrschmidt T, Hoffmann H (1999) Electrorheological effects in lecithin organogels with water and glycerol. J Colloid Interface Sci 212(2):390–401CrossRefGoogle Scholar
  65. Shchipunov YA, Shumilina EV (1995) Lecithin bridging by hydrogen bonds in the organogel. Mater Sci Eng, C 3(1):43–50CrossRefGoogle Scholar
  66. Shchipunov YA, Schmiedel P (1996) Phase behavior of lecithin at the oil/water interface. Langmuir 12(26):6443–6445CrossRefGoogle Scholar
  67. Sinha V, Kumar R, Singh G (2009) Ketorolac tromethamine formulations: an overview. Expert Opin Drug Deliv 6(9):961–975CrossRefGoogle Scholar
  68. Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39:455–463CrossRefGoogle Scholar
  69. Suzuki M, Nigawara T, Yumoto M, Kimura M, Shirai H, Hanabusa K (2003) L-lysine based gemini organogelators: their organogelation properties and thermally stable organogels. Org Biomol Chem 1(22):4124–4131CrossRefGoogle Scholar
  70. Suzuki M, Setoguchi C, Shirai H, Hanabusa K (2007) Organogelation by polymer organogelators with a L-Lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Chem Eur J 13(29):8193–8200CrossRefGoogle Scholar
  71. Terech P (1997) Low-molecular weight organogelators. Spec Surf 3(2):208–268Google Scholar
  72. Terech P, Weiss R (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3160CrossRefGoogle Scholar
  73. Toro-Vazquez J, Morales-Rueda JA, Dibildox-Alvarado E, Charo-Alonso M, Alonzo-Macias M, González-Chávez M (2007) Thermal and textural properties of organogels developed by Candelilla wax in safflower oil. J Am Oil Chem Soc 84(11):989–1000CrossRefGoogle Scholar
  74. Toshiyuki S, Daisuke O, Kenji H (2003) Viscoelastic behavior of organogels. Riron Oyo Rikigaku Koenkai Koen Ronbunshu 52:477–478Google Scholar
  75. Uchegbu I, Vyas S (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70CrossRefGoogle Scholar
  76. Upadhyay K, Tiwari C, Khopade AJ, Bohidar HB, Jain SK (2007) Sorbitan ester organogels for transdermal delivery of Sumatriptan. Drug Dev Ind Pharm 33(6):617–625CrossRefGoogle Scholar
  77. Vintiloiu A, Leroux JC (2008) Organogels and their use in drug delivery—a review. J Controlled Release 125:179–192CrossRefGoogle Scholar
  78. Wendel AKO (1995) Encyclopedia of chemical technology 15:192Google Scholar
  79. Willimann HL, Luisi PL (1991) Lecithin organogels as matrix for the transdermal transport of drugs. Biochem Biophys Res Commun 177(3):897–900CrossRefGoogle Scholar
  80. Willimann H, Luisi PL (1992) Lecithin organogel as matrix for transdermal transport of drugs. J Pharm Sci 81(9):871–874CrossRefGoogle Scholar
  81. Willis-Goulet H, Schmidt BA, Nicklin CF, Marsella R, Kunkle A, Tebbett I (2003) Comparison of serum dexamethasone concentrations in cats after oral or transdermal administration using pluronic lecithin organogel (PLO): a pilot study. Vet Dermatol 14(2):83–89CrossRefGoogle Scholar
  82. Wright A, Marangoni A (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83(6):497–503CrossRefGoogle Scholar
  83. Xenexlabs. PLO Gel Transderma (2010) [cited 2010 April 25]. Available from: http://www.xenexlabs.com/catalogue.php?cid=4&pid=516
  84. Zhao XY, Quan C, Li-Qiang Z, Gao-Yong Z (2006) Rheological properties and microstructures of gelatin-containing microemulsion-based organogels. Colloids Surf, A 281(1–3):67–73CrossRefGoogle Scholar
  85. Zoumpanioti M, Stamatis H, Xenakis A (2003) Microemulsion-based organogels as matrices for lipase immobilization. Biotechnol Adv 28(3):395–406CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advances SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations