Skip to main content

History, Classification, Properties and Application of Hydrogels: An Overview

  • Chapter
  • First Online:
Hydrogels

Abstract

The term hydrogel was coined in 1894 as it was employed to explain a colloidal gel. The first report on the application of hydrogels was given by Wichterle and Lim in 1960, which was in the biomedical field. Hydrogels generally absorb a large amount of water, and this swelling is responsible for the rubbery and soft properties of hydrogel. Hydrogels have found applications in environmental, biomedical, food, etc., fields. This chapter presents a brief review of hydrogels—basic definition, classifications, preparations and applications. This chapter highlights among others, the application of polysaccharide-based hydrogels in adsorption and dye removal in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd EI-Rehirn HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase performance. J Appl Polym Sci 93:1360–1371

    Article  CAS  Google Scholar 

  • Agorku ES, Mittal H, Mamba BB, Pandey AC, Mishra AK (2014) Fabrication of photocatalyst based on Eu3+-doped ZnS–SiO2 and sodium alginate core shell nanocomposite. Int J Biol Macromol 70:143–149

    Article  PubMed  CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  PubMed  CAS  Google Scholar 

  • Akkas P, Guven O (2000) Enhancement of uranyl ion uptake by pre-structuring of acrylamide/maleic acid hydrogels. J Appl Polym Sci 78:284–289

    Article  CAS  Google Scholar 

  • Anderson DMW, Mcnab CNB, Anderson CG, Braown PM, Pringuer MA (1982) Gum exudates from the genus sterculia (gum karaya). Int Tree Crops J 2:147–154

    Article  Google Scholar 

  • Anderson DMW, Wang W (1994) The tree exudate gums permitted in foodstuffs as emulsifiers, stabilisers and thickeners. Chem Ind Forest Prod 14:73–84

    CAS  Google Scholar 

  • Antonio JM, Hortensia OO, Fabian PL, Gregorio CP, Adalberto BM (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production and quality characteristics of tomato. J Appl Bot Food Qual 89:183–189

    Google Scholar 

  • Aspinall GO (1980) Chemistry of cell wall polysaccharides. In: Preiss J (ed) The biochemistry of plants. Academic Press, New York, NY, pp 473–500

    Google Scholar 

  • Aspinall GO, Hirst EL, Wickstrom A (1955) Gum ghatti (Indian gum). The composition of the gum and the structure of two aldobiouronic acids derived from it. J Chem Soc 1160–1165

    Google Scholar 

  • Babu VR, Sairam M, Hosamani KM, Aminabhavi TM (2007) Preparation of sodium alginate–methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym 69:241–250

    Article  CAS  Google Scholar 

  • Banerjee SS, Chen DH (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799

    Article  PubMed  CAS  Google Scholar 

  • Battaerd HAJ, Tregear GW (1967) Graft Copolymers. Interscience, New York

    Google Scholar 

  • Bell CL, Peppas NA (1995) Measurement of the swelling force in ionic polymer networks. III. swelling force of interpolymer complexes. J Control Release 37:277–280

    Article  CAS  Google Scholar 

  • Bemmelen JMV (1894) Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Z Anorg Chem 5:466

    Article  Google Scholar 

  • Brannon-Peppas L (1990) Preparation and characterization of crosslinked hydrophilic networks. Absorbent Polymer Technology, Studies in Polymer Sci 8:46–66

    Google Scholar 

  • Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, New York, pp 1–7

    Google Scholar 

  • Campbell TD (2007) Synthesis and physical characterization of biocompatible hydrogels. PhD Thesis, Department of Chemistry and Biochemistry, The Florida State University

    Google Scholar 

  • Campos VL, Kawano DF, Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180

    Article  CAS  Google Scholar 

  • Chauhan A, Chauhan P, Kaith BS (2012) Natural fiber reinforced composite: a concise review article. J Chem Eng Process Technol 3:1–5

    Google Scholar 

  • Chauhan GS, Kaur I, Misra BN, Singha AS, Kaith BS (1999) Modification of natural polymers: graft co-polymerisation of methyl methacrylate onto rayon fibre initiated by ceric ions- a study in the swelling and thermal properties. J Polym Mater 16:245–252

    CAS  Google Scholar 

  • Chauhan GS, Kaur I, Misra BN, Singha AS, Kaith BS (2000) Evaluation of optimum grafting parameters and the effect of ceric ion initiated grafting of methyl methacrylate onto jute fibre on the kinetics of thermal degradation and swelling behavior. Polym Degrad Stab 69:261–265

    Article  CAS  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Chujo Y, Sada K, Saegusa T (1993a) Cobalt (III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel. Macromolecules 26:6320–6323

    Article  CAS  Google Scholar 

  • Chujo Y, Sada K, Saegusa T (1993b) Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules 26:6315–6319

    Article  CAS  Google Scholar 

  • Das D, Ghosh P, Dhara S, Panda AB, Pal S (2015) Dextrin and poly(acrylic acid)-based biodegradable, non-cytotoxic, chemically cross-linked hydrogel for sustained release of ornidazole and ciprofloxacin. ACS Appl Mater Interfaces 7:4791–4803

    Article  PubMed  CAS  Google Scholar 

  • Daubresse C, Grandfils C, Jerome R, Teyssie P (1994) Enzyme immobilization in nanoparticles produced by inverse microemulsion polymerization. J Colloid Interf Sci 168:222–229

    Article  CAS  Google Scholar 

  • Deepika P, Avijeet KS, Michael JS (2013) Recyclability of poly (N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Colloid Polym Sci 291:1795–1802

    Article  CAS  Google Scholar 

  • Eisenberg SR, Grodzinski AJ (1984) Electrically modulated membrane permeability. J Membr Sci 19:173–194

    Article  CAS  Google Scholar 

  • Erdener K, Omer BU, Dursun S (2000) Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur Polym J 38:2133–2141

    Google Scholar 

  • Flory PJ (1941a) Thermodynamics of high polymer solutions. J Chem Phys 9:660–661

    Article  CAS  Google Scholar 

  • Flory PJ (1941b) Molecular size distribution in three dimensional polymers I. gelation. J Am Chem Soc 63:3083–3090

    Article  CAS  Google Scholar 

  • Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  • Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJ, Devery S, Higginbotham CL (2008) Characterisation and controlled drug release from novel drugloaded hydrogels. Eur J Pharm Biopharm 69:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs. J Control Release 114:1–14

    Article  PubMed  CAS  Google Scholar 

  • Gerola AP, Silva DC, Matsushita AFY, Borges O, Rubira AF, Muniz EC, Valente AJM (2016) The effect of methacrylation on the behavior of Gum Arabic as pH-responsive matrix for colon-specific drug delivery. Eur Polym J 78:326–339

    Article  CAS  Google Scholar 

  • Ghorai S, Sarkar A, Raoufi M, Panda AB, Schonherr H, Pal S (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777

    Article  PubMed  CAS  Google Scholar 

  • Ghorai S, Sarkar AK, Panda AB, Pal S (2013) Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour Technol 144:485–491

    Article  PubMed  CAS  Google Scholar 

  • Ghorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S (2012) Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190

    Article  PubMed  CAS  Google Scholar 

  • Gils PS, Ray D, Sahoo PK (2010) Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. Int J Biol Macromol 46:237–244

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Pathania D, Singh P, Kumar A, Rathore BS (2014) Adsorptional removal of methylene blue by gum-cerium (IV) tungstate hybrid cationic exchanger. Carbohydr Polym 101:684–691

    Article  PubMed  CAS  Google Scholar 

  • He H (2006) Multifunctional medical device based on pH-sensitive hydeogels for controlled drug delivery. PhD Thesis, Chemistry department, Ohio State University, Canton, Ohio

    Google Scholar 

  • Heller J (1993) Polymers for controlled parenteral delivery of peptides and proteins. Adv Drug Deliver Rev 10:163–204

    Article  CAS  Google Scholar 

  • Hennink WE, Nostrum CV (2002) Novel crosslinking methods to design hydrogels. Advan Drug Deliv Rev 54:13–36

    Article  CAS  Google Scholar 

  • Hiremath JN, Vishalakshi B (2015) Evaluation of a pH-responsive guar gum-based hydrogel as adsorbent for cationic dyes: kinetic and modelling study. Polym Bull 72:3063–3081

    Article  CAS  Google Scholar 

  • Hirsch SG, Spontak RJ (2002) Temperature dependent properties developed in hydrogels derived from hydroxypropyl cellulose. Polymer 43:123–129

    Article  CAS  Google Scholar 

  • Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 6:297–305

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh H (2015) Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution. Pol J Chem Technol 17:70–76

    Article  CAS  Google Scholar 

  • Hu XH, Gong X (2016) A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J Colloid Interface Sci 470:62–70

    Article  PubMed  CAS  Google Scholar 

  • Hua X, Tanb H, Hao L (2016) Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. J Mech Behav Biomed Mater 64:43–52

    Article  CAS  Google Scholar 

  • Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64:1712–1719

    Article  CAS  Google Scholar 

  • Huggins ML (1943) Properties of rubber solutions and gels. Ind Eng Chem 35:216–220

    Article  CAS  Google Scholar 

  • Ichikawa T, Nakajima T (1996) Superabsorptive polymers (from natural polysaccharides and peptides). In JC Salamone (ed) Polymeric materials encyclopedia. CRC Press, New York, pp 8051–8059

    Google Scholar 

  • Imeson AP (2000) Carrageenan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Limited, Cambridge UK, pp 87–102

    Google Scholar 

  • Jaiswal M, Koul V (2013) Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. J Biomater Appl 27:848–861

    Article  PubMed  CAS  Google Scholar 

  • Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18:413–421

    Article  CAS  Google Scholar 

  • Jones DS, Andrews GP, Gorman SP (2005) Characterisation of cross-linking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J Pharm Pharmacol 57:1251–1259

    Article  PubMed  CAS  Google Scholar 

  • Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289

    Article  CAS  Google Scholar 

  • Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliver Rev 11:59–84

    Article  CAS  Google Scholar 

  • Karadag E, Saraydin D, Guven O (1995) Behaviours of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions. Sep Sci Tech 30:374

    Article  Google Scholar 

  • Karadag E, Saraydin D, Guven O (1996) Interaction of some cationic dyes with acrylamide/itaconic acid hydrogels. J Appl Polym Sci 61:2367–2372

    Article  CAS  Google Scholar 

  • Karadag E, Saraydin D, Guven O (1997) Interaction of nicotine and its pharmaceutical derivatives with acrylamide/itaconic acid hydrogels. J Appl Polym Sci 66:733

    Article  CAS  Google Scholar 

  • Karadag E, Saraydin D, Oztop HN, Guven O (1994) Adsorption of bovine serum albumin onto acrylamide-itaconic acid hydrogels. Polym Adv Tech 5:664–668

    Article  CAS  Google Scholar 

  • Katayama S, Hirokawa Y, Tanaka T (1984) Reentrant phase transition in acrylamide- derivative copolymer gels. Macromolecules 17:2641–2643

    Article  CAS  Google Scholar 

  • Katono H, Maruyama A, Sanui K, Ogata N, Okano T, Sakurai Y (1991) Thermoresponsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). J Control Release 16:215–227

    Article  CAS  Google Scholar 

  • Kaur H, Banipal TS, Thakur S, Bakshi MS, Kaur G, Singh N (2013) Novel biodegradable films with extraordinary tensile strength and flexibility provided by nanoparticles. ACS Sustain Chem Eng 1:127–136

    Article  CAS  Google Scholar 

  • Khan A, Othman MBH, Razak KA, Akil HM (2013) Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. J Polym Res 20:1–8

    Google Scholar 

  • Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Kamboj SS, Bakshi MS (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis and cytotoxicity toward cancer cell lines. J Phys Chem C 116:8834–8843

    Article  CAS  Google Scholar 

  • Killion JA, Geever LM, Devine DM, Kennedy JE, Higginbotham CJ (2011) Mechanical properties and thermal behavior of PEGDMA hydrogels for potential bone regeneration applications. J Mech Behav Biomed Mater 4:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Article  CAS  PubMed  Google Scholar 

  • Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22:3484–3494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulicke WM, Aggour YA, Nottelmann H, Elsabee M (1989) Swelling and rheological studies of some starch hydrogels. Starch-Starke 41:140–146

    Article  CAS  Google Scholar 

  • Kulshrestha VK, Chatterjee AC, Mukherjee SN (1962) Macromol. Chem Phys 54:205

    CAS  Google Scholar 

  • Kumar V (2013) Characterization of conducting polymer composites and non-conducting polymers with exposure of neutrons, gamma rays and charged particles. PhD Thesis, Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal (Sangrur), Punjab (India)

    Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Kyzas GZ, Lazaridis NK (2009) Reactive and basic dyes removal by sorption onto chitosan derivatives. J Colloid Interf Sci 331:32–39

    Article  CAS  Google Scholar 

  • Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li F, Li S, El Ghzaoui A, Nouailhas H, Zhuo R (2007) Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride. Langmuir 23:2778–2783

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Chouai A, Lo ST, Liu W, Sun X, Simanek EE (2009) Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconjug Chem 20:2154–2161

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841

    Article  PubMed  CAS  Google Scholar 

  • Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365

    Article  PubMed  CAS  Google Scholar 

  • Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Amer J Polym Sci 4:25–31

    CAS  Google Scholar 

  • Mastropietro DJ, Omidian H, Park K (2012) Drug delivery applications for superporous hydrogels. Expert Opin Drug Delivery 9:71–89

    Article  CAS  Google Scholar 

  • Mathur MA, Shailender KM, Scranton A (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Rev Macromol Chem Phys C 36:405–430

    Article  Google Scholar 

  • Mitsumata T, Suemitsu Y, Fujii K, Fujii T, Taniguchi T, Koyama K (2003) pH-response of chitosan, κ–carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer 44:7103–7111

    Article  CAS  Google Scholar 

  • Mittal H, Maity A, Ray SS (2015a) Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel. Int J Biol Macromol 79:8–20

    Article  PubMed  CAS  Google Scholar 

  • Mittal H, Maity A, Ray SS (2015b) Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem Eng J 279:166–179

    Article  CAS  Google Scholar 

  • Mittal H, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym 101:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Mittal H, Fosso-Kankeu E, Mishra SB, Mishra AK (2013a) Biosorption potential of gum ghatti-g-poly(acrylic acid) and susceptibility to biodegradation by B. subtilis. Int J Biol Macromol 62:370–378

    Article  PubMed  CAS  Google Scholar 

  • Mittal H, Mishra SB, Mishra AK, Kaith BS, Jindal R (2013b) Flocculation characteristics and biodegradation studies of gum ghatti based hydrogels. Int J Biol Macromol 58:37–46

    Article  PubMed  CAS  Google Scholar 

  • Mittal H, Mishra SB, Mishra AK, Kaith BS, Jindal R, Kalia S (2013c) Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Carbohydr Polym 98:397–404

    Article  PubMed  CAS  Google Scholar 

  • Mittal H, Parashar V, Mishra SB, Mishra AK (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471–482

    Article  CAS  Google Scholar 

  • Mittal H, Ray SS, Okamoto M (2016) Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification. Macromol Mater Eng 301:496–522

    Article  CAS  Google Scholar 

  • Miyata T (2002) Gels and interpenetrating polymer networks. In: Yui N (ed) Supramolecular design for biological applications. CRC Press, Boca Raton, pp 95–136

    Google Scholar 

  • Mondal IH (2003) Graft copolymerization of nitrile monomers onto sulfonated jute-cotton blended fabric. J Appl Polym Sci 87:2262–2266

    Article  CAS  Google Scholar 

  • Morris GE, Vincent B, Snowden MJ (1997) Adsorption of lead Ions onto N—isopropylacrylamide and acrylic acid copolymer microgels. J Colloid Interf Sci 190:198–205

    Article  CAS  Google Scholar 

  • Nemours EIP (1936) Methacrylate Resins. Ind Eng Chem 28:1160–1163

    Article  Google Scholar 

  • Padhi JR, Nayak D, Nanda A, Rauta PR, Ashe S, Nayak B (2016) Development of highly biocompatible Gelatin and i-Carrageenan based composite hydrogels: in depth physiochemical analysis for biomedical applications. Carbohy Polym 153:292–301

    Article  CAS  Google Scholar 

  • Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12

    Article  CAS  Google Scholar 

  • Park TG, Hoffman AS (1993) Sodium chloride-induced phase transition in nonionic poly (N-isopropylacrylamide) gel. Macromolecules 26:5045–5048

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikaw H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Pongjanyakul T, Puttipipatkhachorn S (2007) Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm 331:61–71

    Article  PubMed  CAS  Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    Article  PubMed  CAS  Google Scholar 

  • Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92:1685–1699

    Article  PubMed  CAS  Google Scholar 

  • Prettyman JB, Eddington DT (2011) Leveraging stimuli responsive hydrogels for on/off control of mixing. Sensor Actuat B Chem 157:722–726

    Article  CAS  Google Scholar 

  • Pulapura S, Kohn J (1992) Trends in the development of bioresorbable polymers for medical applications. J Biomater Appl 6:216–250

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Advan Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  • Qu Y, Chu BY, Peng JR, Liao F, Qi TT, Shi K, Qian ZY (2015) A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Materials 7:20

    Article  CAS  Google Scholar 

  • Rani P, Sen G, Mishra S, Jha U (2012) Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr Polym 89:275–281

    Article  PubMed  CAS  Google Scholar 

  • Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications. ACS Symposium Series 31, pp 1–36

    Google Scholar 

  • Rehab A, Akelah A, Issa R, D’Antone S, Solaro R, Chiellini E (1991) Controlled release of herbicides supported on polysaccharide based hydrogels. J Bioact Compat Polym 6:52–63

    Article  CAS  Google Scholar 

  • Richter A (2010) Hydrogels for actuators. In: Hydrogel sensors and actuators. Springer, Dresden, pp 221–248

    Google Scholar 

  • Ricka J, Tanaka T (1984) Swelling of ionicgels-quantitative performance of the Donnan theory. Macromolecules 17:2916–2921

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Romero MR, Wolfel A, Igarzabal CIA (2016) Smart valve: polymer actuator to moisture soil control. Sens Actuat B: Chem 234:53–62

    Article  CAS  Google Scholar 

  • Saraydin D, Karadag E, Guven O (1995) Adsorption of some heavy metal ions in aqueous solutions onto acrylamide-maleic acid hydrogels. Separation Sci Tech 30:3291

    Article  Google Scholar 

  • Saraydin D, Karadag E, Guven O (1996) Adsorption of some basic dyes by acrylamide-maleic acid hydrogels. Sep Sci Tech 31:423–434

    Article  CAS  Google Scholar 

  • Saraydin D, Karadag E, Oztop HN, Guven O (1994) Adsorption of BSA onto acrylamide-maleic acid hydrogels. Biomaterials 15:917–920

    Article  PubMed  CAS  Google Scholar 

  • Sarika PR, Cinthya K, Jayakrishnan A, Anilkumar PR, James NR (2014) Modified gum arabic cross-linked gelatin scaffold for biomedical applications. Mater Sci Eng, C 43:272–279

    Article  CAS  Google Scholar 

  • Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher A, Turner CE, Horwitz AF (1999) Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J Cell Biol 144:1295–1309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt C (1844) Uber Pflanzenschleim und Bassorin. Annalen 51:29–62

    Article  Google Scholar 

  • Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232:45–55

    Article  CAS  Google Scholar 

  • Sharma K, Kaith BS, Kumar V, Kumar V, Som S, Kalia S, Swart HC (2013) Synthesis and properties of poly(acrylamide-aniline)-grafted gum ghatti based nanospikes. RSC Adv 3:25830–25839

    Article  CAS  Google Scholar 

  • Sharma R, Kaith BS, Kalia S, Pathania D, Kumar A, Sharma N, Street RM, Schauer C (2015a) Biodegradable and conducting hydrogels based on guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manage 162:37–45

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Kalia S, Kaith BS, Pathania D, Kumar A, Thakur P (2015b) Guaran-based biodegradable and conducting interpenetrating polymer network composite hydrogels for adsorptive removal of methylene blue dye. Polym Degrad Stab 122:52–65

    Article  CAS  Google Scholar 

  • Shukla NB, Rattan S, Madras G (2012) Swelling and dye-adsorption characteristics of an amphoteric superabsorbent polymer. Ind Eng Chem Res 51:14941–14948

    Article  CAS  Google Scholar 

  • Silva SS, Mano JF, Reis RL (2010) Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 30:200–221

    Article  PubMed  CAS  Google Scholar 

  • Singhal R, Gupta K (2016) A review tailor-made hydrogel structures (classifications and synthesis parameters). Polym Plast Technol Eng 55:54–70

    Article  CAS  Google Scholar 

  • Stojanovic SI, Nikolic L, Nikolic V, Petrovic S, Stankovic M, Ranisavljevic IM (2011) Stimuli-sensitive hydrogels for pharmaceutical and medical applications. Facta Universitatis Series: Phy Chem Technol 9:37–56

    Google Scholar 

  • Stortz CA, Cerezo AS (2000) Novel findings in carrageenans, agaroids and “hybrid” red seaweed galactans. Curr Topics Phytochem 4:121–134

    CAS  Google Scholar 

  • Tan X, Feldman SR, Chang JW, Balkrishnan R (2012) Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert opi Drug Deliv 9:1263–1271

    Article  CAS  Google Scholar 

  • Tasdelen B, Cifci DI, Meric S (2015) Thermo and pH-responsive polymers and adsorbents for separation purposes. Jacobs J Civil Eng 1:1–3

    Google Scholar 

  • Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46

    Article  PubMed  CAS  Google Scholar 

  • Tighe BJ (1976) The design of polymers for contact lens applications. Br Polym J 8:71–90

    Article  CAS  Google Scholar 

  • Treloar LRG (1951) The physical properties of amorphous polymer networks. Chem Ind 45:955–958

    Google Scholar 

  • Treloar LRG (1952) The thermodynamic study of rubber-like elasticity. Proc Royal Soc London Series B-Biolog Sci 139:506–521

    Article  CAS  Google Scholar 

  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng, C 57:414–433

    Article  CAS  Google Scholar 

  • Usov AI (2011) Polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogel assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chen L, Tan LI, Zhao Q, Feng Luo, Wei Y, Qian Z (2014) PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials 35:6972–6985

    Article  PubMed  CAS  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Yan Z, Lin Z, Yizhong C (2016) Swelling properties and environmental responsiveness of superabsorbent composite based on starch-G-poly acrylic acid/organo-zeolite. J Macromol Sci B 55:662–679

    Article  CAS  Google Scholar 

  • Yetimoglu EK, Kahraman MV, Ercan O (2007) N-vinylpyrrolidone/acrylic acid/2- acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67:451–460

    Article  CAS  Google Scholar 

  • Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Pulsatile drug delivery systems using hydrogels. Adv Drug Deliver Rev 11:85–108

    Article  CAS  Google Scholar 

  • Zeng M, Zhang L, Zhou Y (2004) Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polym 45:3535–3545

    Article  CAS  Google Scholar 

  • Zhang X, Matteus Goosen FA, Wyss SP, Pichora D (1993) Biodegradable polymers for orthopedic applications. Polym Rev 33:81–102

    CAS  Google Scholar 

  • Zhang Y, Wu F, Li M, Wang E (2005) pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer 46:769–7700

    Google Scholar 

  • Zhao H, Zhou F, Peng W, Zheng J, Dziugan P, Zhang B (2015) The effects of carrageenan on stability of arachin and the interactions between them. Food Hydrocoll 43:763–768

    Article  CAS  Google Scholar 

  • Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devic 8:607–626

    Article  CAS  Google Scholar 

  • Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iranian Polym J 17:451–477

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omotayo Ademola Arotiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, S., Thakur, V.K., Arotiba, O.A. (2018). History, Classification, Properties and Application of Hydrogels: An Overview. In: Thakur, V., Thakur, M. (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9_2

Download citation

Publish with us

Policies and ethics