Skip to main content

Hydrogels from Catechol-Conjugated Polymeric Materials

  • Chapter
  • First Online:
Hydrogels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Digging into in vivo phenomena is not always a vain task. Its merits will lighten sooner or later. Indeed, in the last two decades, Nature has unveiled to scientists the adhesiveness of proteins secreted within the mussel feet, to a large spectrum of substrata, and, unexpectedly, in aqueous environment. The secret behind this bio-adhesiveness lies on the synergetic adhesive action of 3, 4-dihydroxyphenyl-l-alanine (l-DOPA) and lysine, two amino acid residues in protein skeleton. Mimicking the mussel feet protein (mfp), a plethora of synthetic and natural polymers functionalized with catechol-containing molecules such as l-DOPA were considered as platforms for hydrogel making. Hydrogels tackled in this chapter include those based on poly(alkene oxide)s including poly(ethylene glycol) (PEG) and Pluronics (PEO/PPO/PEO), polyacrylics, alginate, chitosan, gelatin, hyaluronic acid, polypeptides, polyamides, polyesters, polyurethane, poly(vinyl alcohol), and polyallylamine. The applications thereof, in tune with the properties of polymer–catechol conjugates, are propitiously highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  • Ahn BK, Lee DW, Israelachvili JN, Waite JH (2014) Surface-initiated self-healing of polymers in aqueous media. Nat Mater 13:867–872

    Article  CAS  PubMed  Google Scholar 

  • Ai Y, Nie J, Wu G, Yang D (2014) The DOPA-functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. J Appl Polym Sci 131:10p. https://doi.org/10.1002/APP.41102

    Article  Google Scholar 

  • Alge DL, Azagarsamy MA, Donohue DF, Anseth KS (2013) Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromol 14:949–953

    Article  CAS  Google Scholar 

  • Altunbas A, Pochan DJ (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Top Curr Chem 310:135–167

    Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. In: Amidi M, Hennink WE (eds) Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Del Rev 62:83–99

    Google Scholar 

  • Bilic G, Brubaker C, Messersmith PB, Mallik AS, Quinn TM, Haller C, Done E, Gucciardo L, Zeisberger SM, Zimmermann R, Deprest J, Zisch AH (2010) Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. Am J Obstet Gynecol 202:85.e1–85.e9

    Google Scholar 

  • Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromol 12:4326–4334

    Article  CAS  Google Scholar 

  • Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427

    Article  CAS  PubMed  Google Scholar 

  • Burke SA, Ritter-Jones M, Lee BP, Messersmith PB (2007) Thermal gelation and tissue adhesion of biomimetic hydrogels. Biomed Mater 2:203–210. https://doi.org/10.1088/1748-6041/2/4/001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cencer M, Liu Y, Winter A, Murley M, Meng H, Lee BP (2014) Effect of pH on the rate of curing and bioadhesive properties of dopamine functionalized poly(ethylene glycol) hydrogels. Biomacromol 15:2861–2869

    Article  CAS  Google Scholar 

  • Choi YC, Choi JS, Jung YJ, Cho YW (2014) Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking. J Mater Chem B 2:201–209

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Iturri J, Paez J, Shafiq Z, Serrano C, d’Ischia M, del Campo A (2014) Dopamine-based coatings and hydrogels: toward substitution-related structure-property relationships. Macromol Chem Phys 215:2403–2413

    Article  CAS  Google Scholar 

  • Ding X, Vegesna GK, Meng H, Winter A, Lee BP (2015) Nitro-group functionalization of dopamine and its contribution to the viscoelastic properties of catechol-containing nanocomposite hydrogels. Macromol Chem Phys, 11 p. https://doi.org/10.1002/macp.201500010

  • Dooling LJ, Tirrell DA (2013) Peptide and protein hydrogels. In: Loh XJ, Scherman OA (eds) Polymeric and self-assembled hydrogels: from fundamental understanding to applications (Chap. 5). Royal Society of Chemistry, pp 93–124

    Google Scholar 

  • Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS (2009) A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv Mater 21:5005–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38:236–270

    Article  CAS  Google Scholar 

  • Fichman G, Adler-Abramovich L, Manohar S, Mironi-Harpaz I, Guterman T, Seliktar D, Messersmith PB, Gazi E (2014) Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-l-phenylalanine) peptide motif. ACS Nano 8:7220–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullenkamp DE, Barrett DG, Miller DR, Kurutz JW, Messersmith PB (2014) pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv 4:25127–25134

    Article  CAS  PubMed  Google Scholar 

  • García-Fernández L, Cui J, Serrano C, Shafi Z, Gropeanu RA, Miguel VS, Ramos JI, Wang M, Auernhammer GK, Rit S, Golriz AA, Berger R, Wagner M, del Campo A (2013) Antibacterial strategies from the sea: Polymer-bound Cl-catechols for prevention of biofilm formation. Adv Mater 25:529–533

    Article  CAS  PubMed  Google Scholar 

  • Ghobril C, Grinstaff MW (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44:1820–1835

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Ni K, Wei D, Ren Y (2015) Fe3+-induced oxidation and coordination cross-linking in catechol-chitosan hydrogels under acidic pH conditions. RSC Adv 5:37377–37384

    Article  CAS  Google Scholar 

  • Guvendiren M, Messersmith PB, Shull KR (2008) Self-assembly and adhesion of DOPA modified methacrylic triblock hydrogels. Biomacromol 9:122–128

    Article  CAS  Google Scholar 

  • Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660

    Article  CAS  PubMed  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  • He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun 47:7497–7499

    Article  CAS  Google Scholar 

  • Holten-Andersen N, Jaishankar A, Harrington MJ, Fullenkamp DE, DiMarco G, He L, McKinley GH, Messersmith PB, Lee KYC (2014) Metal-coordination: using one of nature’s tricks to control soft material mechanics. J Mater Chem B 2:2467–2472

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Lee H, Lee H (2014) Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions. Beilstein J Nanotechnol 5:887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SH, Shin M, Lee J, Ryu JH, Lee S, Yang JW, Kim WD, Lee H (2015) STAPLE: stable alginate gel prepared by linkage exchange from ionic to covalent bonds. Adv Healthcare Mater, 5 p. https://doi.org/10.1002/adhm.201400833

  • Huang K, Lee B, Messersmith PB (2001) Synthesis and characterization of self-assembling block copolymers containing adhesive moieties. Polym Prepr 42:147–148

    CAS  Google Scholar 

  • Huang K, Lee B, Ingram DR, Messersmith PB (2002) Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromol 3:397–406

    Article  CAS  Google Scholar 

  • Huang K, Chen JS, Liu Y (2012) Bioinspired synthesis of cross-linking of dopamine-containing block copolymers to form thermosensitive covalent hydrogels. Key Eng Mater 531–532:238–241

    Article  Google Scholar 

  • Hutanu D, Frishberg MD, Guo L, Darie CC (2014) Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod Chem Appl 2:6p. https://doi.org/10.4172/2329-6798.1000132

    Article  CAS  Google Scholar 

  • Jonker AM, Löwik DWPM, van Hest JCM (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773

    Article  CAS  Google Scholar 

  • Jonker AM, Borrmann A, van Eck ERH, van Delft FL, Löwik DWPM, van Hest JCM (2015) A fast and activatable cross-linking strategy for hydrogel formation. Adv Mater 27:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Kastrup CJ, Nahrendorf M, Figueiredo JL, Lee H, Kambhampati S, Lee T, Cho SW, Gorbatov R, Iwamoto Y, Dang TT, Dutta P, Yeon JH, Cheng H, Pritchard CD, Vegas AJ, Siegel CD, MacDougall S, Okonkwo M, Thai A, Stone JR, Coury AJ, Weissleder R, Langer R, Anderson DG (2012) Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc Natl Acad Sci USA 109:21444–21449

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water insoluble chitosan into a highly water soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 1:783–790

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Oh DX, Kim S, Seo JH, Hwang DS, Masic A, Han DK, Cha HJ (2014) Mussel-mimetic protein-based adhesive hydrogel. Biomacromol 15:1579–1585

    Article  CAS  Google Scholar 

  • Kim K, Kim K, Ryu JH, Lee H (2015) Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials 52:161–170

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromol 14:297–301

    Article  CAS  Google Scholar 

  • Krogsgaard M, Hansen MR, Birkedal H (2014) Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. J Mater Chem B 2:8292–8297

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard M, Nue V, Birkedal H (2015) Mussel-inspired materials: self-healing through coordination chemistry, Minireview. Chem Eur J 21:1–15

    Article  Google Scholar 

  • Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486

    Article  CAS  Google Scholar 

  • Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26:3415–3419

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Lee SY (2014) A colorimetric alginate-catechol hydrogel suitable as a spreadable pH indicator. Dyes Pigments 108:1–6

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BP, Dalsin JL, Messersmith PB (2001) Enzymatic and non-enzymatic pathways to formation of DOPA-modified PEG hydrogels. Polym Prepr 42:151–152

    CAS  Google Scholar 

  • Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromol 3:1038–1047

    Article  CAS  Google Scholar 

  • Lee BP, Huang K, Nunalee FN, Shull K, Messersmith PB (2004) Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG diacrylate to form hydrogels. J Biomater Sci Polym Edn 15:449–464

    Article  CAS  Google Scholar 

  • Lee BP, Chao CY, Nunalee FN, Motan E, Shull KR, Messersmith PB (2006) Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 39:1740–1748

    Article  CAS  Google Scholar 

  • Lee BP, Liu Y, Konst S (2014) Novel hydrogel actuator based on biomimetic chemistry. In: MRS Proceedings, vol. 1710. Materials Research Society. http://dx.doi.org/10.1557/opl.2014.511

  • Lee BP, Lin MH, Narkar A, Konst S, Wilharm R (2015a) Modulating the movement of hydrogel actuator based on catechol-iron ion coordination chemistry. Sens Actuator B Chem 206:456–462

    Article  CAS  Google Scholar 

  • Lee SB, González-Cabezas C, Kim KM, Kim KN, Kuroda K (2015b) Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration. Biomacromol 16:2265–2275

    Article  CAS  Google Scholar 

  • Li L, Smitthipong W, Zeng H (2015a) Mussel-inspired hydrogels for biomedical and environmental applications. Polym Chem 6:353–358

    Article  CAS  Google Scholar 

  • Li L, Yan B, Yang J, Chen L, Zeng H (2015b) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater, 5 p. https://doi.org/10.1002/adma.201405166

  • Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee BP (2014) Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 6:16982–16992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdizadeh M, Weng H, Gyawali D, Tang L, Yang J (2012) Injectable citrate-based mussel inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Li Y, Faust M, Konst S, Lee BP (2015) Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety. Acta Biomater 17:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messersmith PB, Rivera J, Gong YK (2014) Antifouling hydrogels, coatings, and methods of synthesis and use thereof. US Patent 8,796,394 B2, 5 Aug 2014

    Google Scholar 

  • Moulay S (2009) Poly(vinyl alcohol): what a material! what a chemistry! In: Pandalai SG (ed) Recent research and developments in applied polymer science, Part II, vol 4. Research Signpost, Kerala, India, pp 391–496

    Google Scholar 

  • Moulay S (2014) Dopa/catechol-tethered polymers: bioadhesives and biomimetic adhesive materials. Polym Rev 54:436–513

    Article  CAS  Google Scholar 

  • Moulay S (2015) Review: poly(vinyl alcohol) functionalizations and applications. Polym Plast Technol Eng 54:1289–1319

    Article  CAS  Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med Czech 53:397–411

    Article  CAS  Google Scholar 

  • Neto AI, Cibrão AC, Correia CR, Carvalho RR, Luz GM, Ferrer GG, Botelho G, Picart C, Alves NM, Mano JF (2014) Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small, 11 p. https://doi.org/10.1002/smll.201303568

  • Oh YJ, Cho H, Lee H, Park KJ, Lee H, Park SY (2012) Bio-inspired catechol chemistry: a new way to develop a re-moldable and injectable coacervate hydrogel. Chem Commun 48:11895–11897

    Article  CAS  Google Scholar 

  • Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators. Springer Series on chemical sensors and biosensors, vol. 6. Springer, Berlin Heidelberg, pp 1–14

    Google Scholar 

  • Park JP, Song IT, Lee J, Ryu JH, Lee Y, Lee H (2015) Vanadyl-catecholamine hydrogels inspired by ascidians and mussels. Chem Mater 27:105–111

    Article  CAS  Google Scholar 

  • Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  CAS  PubMed  Google Scholar 

  • Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047

    Article  CAS  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  • Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70

    Article  CAS  PubMed  Google Scholar 

  • Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci 244:19–44

    Google Scholar 

  • Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011) Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromol 12:2653–2659

    Article  CAS  Google Scholar 

  • Ryu JH, Jo S, Koh MY, Lee H (2014a) Bio-Inspired, water-soluble to insoluble self-conversion for flexible, biocompatible, transparent, catecholamine polysaccharide thin films. Adv Funct Mater, 8 p. https://doi.org/10.1002/adfm.201402250

  • Ryu JH, Lee Y, Do MJ, Jo SD, Kim JS, Kim BS, Im GI, Park TG, Lee H (2014b) Chitosan-g-hematin: enzyme-mimicking polymeric catalyst for adhesive hydrogels. Acta Biomater 10:224–233

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Hong S, Lee H (2015) Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review. Acta Biomater 27:101–115

    Article  CAS  PubMed  Google Scholar 

  • Schante CE, Zuber G, Herlin C, Vandamme TF (2011) Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym 85:469–489

    Article  CAS  Google Scholar 

  • Seo JH, Park SJ, Um SH, Nam SW, Kim YJ, Kim JH (2015) Swelling and metal-ion adsorption properties of dopamine-conjugated polyaspartate hydrogel. J Polym Environ 23:90–96

    Article  CAS  Google Scholar 

  • Shi D, Liu R, Dong W, Li X, Zhang H, Chen M, Akashi M (2015) pH-Dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in a metal-free environment. RSC Adv 5:82252–82258

    Article  CAS  Google Scholar 

  • Shin J, Lee JS, Lee C, Park HJ, Yang K, Jin Y, Ryu JH, Hong KS, Moon SH, Chung HM, Yang HS, Um SH, Oh JW, Kim DI, Lee H, Cho SW (2015) Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv Funct Mater 25:3814–3824

    Article  CAS  Google Scholar 

  • Skelton S, Bostwick M, O’Connor K, Konst S, Caseya S, Lee BP (2013) Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9:3825–3833

    Article  CAS  Google Scholar 

  • Sun P, Wang J, Yao X, Peng Y, Tu X, Du P, Zheng Z, Wang X (2014) Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior. ACS Appl Mater Interfaces 6:12495–12504

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  CAS  PubMed  Google Scholar 

  • Vatankhah-Varnoosfaderani M, Hashmi S, GhavamiNejad A, Stadler FJ (2014) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron-catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5:512–523

    Article  CAS  Google Scholar 

  • Wang Y, Zhao Q, Luo Y, Xu Z, Zhang H, Yang S, Wei Y, Jia X (2015a) A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. Chem Commun 51:16786–16789

    Article  CAS  Google Scholar 

  • Wang W, Xu Y, Li A, Li T, Liu M, von Klitzing R, Ober CK, Kayitmazer AB, Li L, Guo X (2015b) Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Adv 5:66871–66878

    Article  CAS  Google Scholar 

  • Wang B, Jeon YS, Park HS, Kim YJ, Kim JH (2015c) Mussel-mimetic self-healing polyaspartamide derivative gel via boron-catechol interactions. eXPRESS Polym Lett 9:799–808

    Google Scholar 

  • White EM, Seppala JE, Rushworth PM, Ritchie BW, Sharma S, Locklin J (2013) Switching the adhesive state of catecholic hydrogels using phototitration. Macromolecules 46:8882–8887

    Article  CAS  Google Scholar 

  • Wilker JJ (2014) Self-healing polymers: sticky when wet. Nat Mater 13:849–850

    Article  CAS  PubMed  Google Scholar 

  • Willcox PJ, Howie DWJr, Schmidt-Rohr K, Hoagland DA, Gido SP, Pudjijanto S, Kleiner LW, Venkatraman S (1999) Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J Polym Sci B Polym Phys 37:3438–3454

    Google Scholar 

  • Xu Z (2013) Mechanics of metal-catecholate complexes: The roles of coordination state and metal types. Sci Rep 3: 2914, 7 p https://doi.org/10.1038/srep02914

  • Xu J, Soliman GM, Barralet J, Cerruti M (2012a) Mollusk glue inspired mucoadhesives for biomedical applications. Langmuir 28:14010–14017

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Nishida J, Ma W, Wu H, Kobayashi M, Otsuka H, Takahara A (2012b) Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups. ACS Macro Lett 1:457–460

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Nishida J, Wu H, Higaki Y, Otsuka H, Ohta N, Takahara A (2013) Structural effects of catechol-containing polystyrene gels based on dual cross-linking approach. Soft Matter 9:1967–1974

    Article  CAS  Google Scholar 

  • Xu JX, Zhou Z, Wu B, He BF (2014) Enzymatic formation of a novel cell-adhesive hydrogel based on small peptides with a laterally grafted l-3,4-dihydroxyphenylalanine group. Nanoscale 6:1277–1280

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Strandman S, Zhu JXX, Barralet J, Cerruti M (2015) Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37:395–404

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446–7467

    Article  CAS  PubMed  Google Scholar 

  • Yavvari PS, Srivastava A (2015) Robust, self-healing hydrogels synthesised from catechol rich polymers. J Mater Chem B 3:899–910

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Liu X, Yuan W, Brown LJ, Wang D (2015) Confined flocculation of ionic pollutants by poly(l-dopa)-based polyelectrolyte complexes in hydrogel beads for three-dimensional, quantitative, efficient water decontamination. Langmuir 31:6351–6366

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Westhaus E, Eberle N, Lee B, Messersmith PB (2000) Synthesis and characterization of DOPA-PEG conjugates. Polym Prepr 41:989–990

    CAS  Google Scholar 

  • Zhang W, Pan Z, Yang FK, Zhao B (2015) A facile in situ approach to polypyrrole functionalization through bioinspired catechols. Adv Funct Mater, 10 p. https://doi.org/10.1002/adfm.201403115

  • Zheng J, Callahan LAS, Hao J, Guo K, Wesdemiotis C, Weiss RA, Becker ML (2012) Strain-promoted cross-linking of PEG-based hydrogels via copper-free cycloaddition. ACS Macro Lett 1:1071–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Moulay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moulay, S. (2018). Hydrogels from Catechol-Conjugated Polymeric Materials. In: Thakur, V., Thakur, M. (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9_16

Download citation

Publish with us

Policies and ethics