Skip to main content

Stem Cell Culture on Polymer Hydrogels

  • Chapter
  • First Online:
Hydrogels

Abstract

The fate of stem cell differentiation is guided by several different factors of the stem cell microenvironment, such as cell culture biomaterial elasticity (physical cues) and cell–biomaterial interactions (biological cues). Mimicking the stem cell microenvironment using polymer hydrogels with optimal elasticities is an excellent strategy for stem cell expansion and differentiation. This chapter describes poly(vinyl alcohol) (PVA) hydrogels grafted with several nanosegments that are designed for the culture and differentiation of human hematopoietic and progenitor cells (hHSPCs), human amniotic fluid stem cells (hAFSCs), and human pluripotent stem cells (hPSCs). The elasticity of the cell culture hydrogels can regulate stem cell adhesion overall, as well as cell phenotype, focal adhesions, and morphology, especially in 2-D culture conditions. The mechano-sensing of cell culture biomaterials by stem cells is typically regulated by integrin-mediated focal adhesion signaling. PVA hydrogels having a storage modulus (E′) of 12–30 kPa were found to be efficient materials for ex vivo hHSPC expansion. We also developed PVA hydrogels grafted with oligopeptides derived from vitronectin (PVA-oligoVN hydrogels), which can be produced to have a variety of stiffnesses, for the xeno-free culture of hPSCs. The ideal stiffness of the PVA-oligoVN hydrogels for hPSC culture was found to be 25.3 kPa. A high concentration of oligoVN (500–1500 µg/mL) should be used to prepare the PVA-oligoVN hydrogels to achieve a sufficient oligoVN surface density to maintain hPSC pluripotency. Optimized stiffness (physical cues) and cell-binding moiety surface density (biological cues) are the key factors for designing hydrogel-based cell culture materials for supporting hPSC pluripotency in xeno-free culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31:9135–9144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  Google Scholar 

  • Chang CW, Hwang Y, Brafman D, Hagan T, Phung C, Varghese S (2013) Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials 34:912–921

    Article  CAS  PubMed  Google Scholar 

  • Chen LY, Chang Y, Shiao JS, Ling QD, Chang Y, Chen YH, Chen DC, Hsu ST, Lee HHC, Higuchi A (2012) Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Biomater 8:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Prowse AB, Jia Z, Tellier H, Munro TP, Gray PP, Monteiro MJ (2014) Thermoresponsive worms for expansion and release of human embryonic stem cells. Biomacromol 15:844–855

    Article  CAS  Google Scholar 

  • Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5:e15655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua KN, Chai C, Lee PC, Ramakrishna S, Leong KW, Mao HQ (2007) Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Exp Hematol 35:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua KN, Chai C, Lee PC, Tang YN, Ramakrishna S, Leong KW, Mao HQ (2006) Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials 27:6043–6051

    Article  CAS  PubMed  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. New Eng J Med 354:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  CAS  PubMed  Google Scholar 

  • Dellatore SM, Garcia AS, Miller WM (2008) Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 19:534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Zhang X, Zhao X, Li Q, Ye Z, Li Z, Liu Y, Zhou Y, Ma H, Pan G, Pei D, Fang J, Wei S (2013) Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions. Acta Biomater 9:8840–8850

    Article  CAS  PubMed  Google Scholar 

  • Di Maggio N, Piccinini E, Jaworski M, Trumpp A, Wendt DJ, Martin I (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32:321–329

    Article  CAS  PubMed  Google Scholar 

  • Doran MR, Markway BD, Aird IA, Rowlands AS, George PA, Nielsen LK, Cooper-White JJ (2009) Surface-bound stem cell factor and the promotion of hematopoietic cell expansion. Biomaterials 30:4047–4052

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  • Fan Y, Hsiung M, Cheng C, Tzanakakis ES (2014) Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension. Tissue Eng Part A 20:588–599

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Chai C, Jiang XS, Leong KW, Mao HQ (2006) Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. J Biom Mater Res A 78:781–791

    Article  CAS  Google Scholar 

  • Flores-Guzman P, Fernandez-Sanchez V, Valencia-Plata I, Arriaga-Pizano L, Alarcon-Santos G, Mayani H (2013) Comparative in vitro analysis of different hematopoietic cell populations from human cord blood: in search of the best option for clinically oriented ex vivo cell expansion. Transfusion 53:668–678

    Article  CAS  PubMed  Google Scholar 

  • Franke K, Pompe T, Bornhauser M, Werner C (2007) Engineered matrix coatings to modulate the adhesion of CD133 + human hematopoietic progenitor cells. Biomaterials 28:836–843

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto N, Fujita S, Tsuji T, Toguchida J, Ida K, Suginami H, Iwata H (2007) Microencapsulated feeder cells as a source of soluble factors for expansion of CD34(+) hematopoietic stem cells. Biomaterials 28:4795–4805

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gori JL, Chandrasekaran D, Kowalski JP, Adair JE, Beard BC, D’Souza SL, Kiem HP (2012) Efficient generation, purification, and expansion of CD34(+) hematopoietic progenitor cells from nonhuman primate-induced pluripotent stem cells. Blood 120:e35–e44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi A, Huang SC, Shen PY, Ling QD, Zhao JK, Chang Y, Wang HC, Bing JT, Hsu ST (2011a) Differentiation ability of amniotic fluid-derived stem cells cultured on extracellular matrix-immobilized surface. Curr Nanosci 7:893–901

    Article  CAS  Google Scholar 

  • Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, Munusamy MA, Murugan K, Chang SC, Lee HC, Hsu ST, Kumar SS, Umezawa A (2015a) Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity Sci Rep 5:18136

    PubMed  CAS  Google Scholar 

  • Higuchi A, Lin FL, Cheng YK, Kao TC, Kumar SS, Ling QD, Hou CH, Chen DC, Hsu ST, Wu GJ (2014a) Preparation of induced pluripotent stem cells on dishes grafted on oligopeptide under feeder-free conditions. J Taiwan Inst Chem Eng 45:295–301

    Article  CAS  Google Scholar 

  • Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A (2013) Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev 113:3297–3328

    Article  CAS  PubMed  Google Scholar 

  • Higuchi A, Ling QD, Hsu ST, Umezawa A (2012) Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 112:4507–4540

    Article  CAS  PubMed  Google Scholar 

  • Higuchi A, Ling QD, Ko YA, Chang Y, Umezawa A (2011b) Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev 111:3021–3035

    Article  CAS  PubMed  Google Scholar 

  • Higuchi A, Ling QD, Kumar S, Munusamy M, Alarfajj AA, Umezawa A, Wu GJ (2014b) Design of polymeric materials for culturing human pluripotent stem cells: progress toward feeder-free and xeno-free culturing. Prog Polym Sci 39:1348–1374

    Article  CAS  Google Scholar 

  • Higuchi A, Ling QD, Kumar SS, Chang Y, Alarfaj AA, Munusamy MA, Murugan K, Hsu ST, Umezawa A (2015b) Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J Mater Chem B 3:8032–8058

    Article  CAS  Google Scholar 

  • Higuchi A, Yang ST, Li PT, Chang Y, Tsai EM, Chen YH, Chen YJ, Wang HC, Hsu ST (2009) Polymeric materials for ex vivo expansion of hematopoietic progenitor and stem cells. Polym Rev 49:181–200

    Article  CAS  Google Scholar 

  • Higuchi A, Yang ST, Li PT, Tamai M, Tagawa Y, Chang Y, Chang Y, Ling QD, Hsu ST (2010) Direct ex vivo expansion of hematopoietic stem cells from umbilical cord blood on membranes. J Membr Sci 351:104–111

    Article  CAS  Google Scholar 

  • Holmes T, Yan F, Ko KH, Nordon R, Song E, O’Brien TA, Dolnikov A (2012) Ex vivo expansion of cord blood progenitors impairs their short-term and long-term repopulating activity associated with transcriptional dysregulation of signalling networks. Cell Prolif 45:266–278

    Article  CAS  PubMed  Google Scholar 

  • Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin EF, Gupta R, Dashti DC, Healy KE (2011) Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32:6912–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang XS, Chai C, Zhang Y, Zhuo RX, Mao HQ, Leong KW (2006) Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34 + cells. Biomaterials 27:2723–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas SJ, Alva HA, Richardson W, Sherman SP, Galic Z, Pyle AD, Dunn B (2013) A spatially and chemically defined platform for the uniform growth of human pluripotent stem cells. Mater Sci Eng, C 33:234–241

    Article  CAS  Google Scholar 

  • Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR (1998) Single platform flow cytometric absolute CD34 + cell counts based on the ISHAGE guidelines. Cytometry 34:61–70

    Article  CAS  PubMed  Google Scholar 

  • Kerst JM, Sanders JB, Slaper-Cortenbach IC, Doorakkers MC, Hooibrink B, van Oers RH, von dem Borne AE, van der Schoot CE (1993) Alpha 4 beta 1 and alpha 5 beta 1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34 + cells to fibronectin in an activation-dependent way. Blood 81:344–351

    PubMed  CAS  Google Scholar 

  • Kishore V, Eliason JF, Matthew HW (2011) Covalently immobilized glycosaminoglycans enhance megakaryocyte progenitor expansion and platelet release. J Biomed Mater Res A 96:682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SS, Hsiao JH, Ling QD, Dulinska-Molak I, Chen GP, Chang Y, Chang Y, Chen YH, Chen DC, Hsu ST, Higuchi A (2013) The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials 34:7632–7644

    Article  CAS  PubMed  Google Scholar 

  • Lanniel M, Huq E, Allen S, Buttery L, Williams PM, Alexander MR (2011) Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter 7:6501–6514

    Article  CAS  Google Scholar 

  • Lin PY, Hung SH, Yang YC, Liao LC, Hsieh YC, Yen HJ, Lu HE, Lee MS, Chu IM, Hwang SM (2014) A synthetic peptide-acrylate surface for production of insulin-producing cells from human embryonic stem cells. Stem Cells Dev 23:372–379

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yoshioka M, Nakajima M, Ogasawara A, Liu J, Hasegawa K, Li S, Zou J, Nakatsuji N, Kamei K, Chen Y (2014) Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 35:6259–6267

    Article  CAS  PubMed  Google Scholar 

  • Lu HF, Chai C, Lim TC, Leong MF, Lim JK, Gao S, Lim KL, Wan AC (2014) A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 35:2816–2826

    Article  CAS  PubMed  Google Scholar 

  • Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotech 28:606–610

    Article  CAS  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, Hayashi M, Kumagai H, Nakatsuji N, Sekiguchi K, Kawase E (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N, Panoskaltsis N (2011) Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 32:9263–9270

    Article  CAS  PubMed  Google Scholar 

  • Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL (2012) Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6:10168–10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA (2010) Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol 10:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandivada H, Villa-Diaz LG, O’Shea KS, Smith GD, Krebsbach PH, Lahann J (2011) Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat Protoc 6:1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH (2011a) Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 7:181–194

    Article  PubMed  Google Scholar 

  • Park HJ, Yang K, Kim MJ, Jang J, Lee M, Kim DW, Lee H, Cho SW (2015) Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials 50:127–139

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Chu JS, Tsou AD, Diop R, Tang ZY, Wang AJ, Li S (2011b) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32:3921–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST (2015) Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med 4:165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Villa-Diaz LG, Kumar R, Lahann J, Krebsbach PH (2014) Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings. Biomaterials 35:9581–9590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remberger M, Mattsson J, Olsson R, Ringden O (2011) Second allogeneic hematopoietic stem cell transplantation: a treatment for graft failure. Clin Transplantation 25:E68–E76

    Article  Google Scholar 

  • Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, Jacobsen N, Ruutu T, de Lima M, Finke J, Frassoni F, Gluckman E (2004) Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. New Eng J Med 351:2276–2285

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotech 28:611–615

    Article  CAS  Google Scholar 

  • Rodriguez-Pardo VM, Vernot JP (2013) Mesenchymal stem cells promote a primitive phenotype CD34 + c-kit + in human cord blood-derived hematopoietic stem cells during ex vivo expansion. Cell Mol Biol Lett 18:11–33

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Tripathy M, Mathur N, Jain A, Mukhopadhyay A (2012) Hypoxia improves expansion potential of human cord blood-derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 88:396–405

    Article  CAS  PubMed  Google Scholar 

  • Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophy J 95:4426–4438

    Article  CAS  Google Scholar 

  • Salati S, Lisignoli G, Manferdini C, Pennucci V, Zini R, Bianchi E, Norfo R, Facchini A, Ferrari S, Manfredini R (2013) Co-culture of hematopoietic stem/progenitor cells with human osteblasts favours mono/macrophage differentiation at the expense of the erythroid lineage. PLoS ONE 8:e53496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson E, Jacquet L, Miere C, Wood V, Kadeva N, Cornwell G, Codognotto S, Dajani Y, Braude P, Ilic D (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  • Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649

    Article  CAS  PubMed  Google Scholar 

  • Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6:e15978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui H, Valamehr B, Hindoyan A, Qiao R, Ding X, Guo S, Witte ON, Liu X, Ho CM, Wu H (2011) An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun 2:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotech 28:581–583

    Article  CAS  Google Scholar 

  • Wang PY, Lee HHC, Higuchi A, Ling QD, Lin HR, Li HF, Kumar SS, Chang Y, Alarfaj AA, Munusamy MA, Chen DC, Hsu ST, Wang HC, Hsiao HY, Wu GJ (2015) Pluripotency maintenance of amniotic fluid-derived stem cells cultured on biomaterials. J Mater Chem B 3:3858–3869

    Article  CAS  Google Scholar 

  • Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Johansson J, Damdimopoulou P, Shahsavani M, Falk A, Hovatta O, Rising A (2014) Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials 35:8496–8502

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Ikeda H, Toyama D, Hayashi M, Akiyama K, Suzuki M, Tanaka Y, Watanabe T, Fujimoto Y, Hosaki I, Nishihira H, Isoyama K (2011) Quality of long-term cryopreserved umbilical cord blood units for hematopoietic cell transplantation. Int J Hematol 93:99–105

    Article  PubMed  Google Scholar 

  • Zhang R, Mjoseng HK, Hoeve MA, Bauer NG, Pells S, Besseling R, Velugotla S, Tourniaire G, Kishen RE, Tsenkina Y, Armit C, Duffy CR, Helfen M, Edenhofer F, de Sousa PA, Bradley M (2013) A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun 4:1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, Chong YT (2008) Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int 32:1439–1448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Ministry of Science and Technology, Taiwan, under grant number 104-2221-E-008-107-MY3. This work was also supported by the LandSeed Hospital project (NCU-LSH-105-A-001) and the Cathay General Hospital Project (105CGH-NCU-A3). A Grant-in-Aid for Scientific Research (15K06591) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan is also acknowledged. The Deanship of Scientific Research, College of Science Research Centre, King Saud University, Kingdom of Saudi Arabia, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akon Higuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higuchi, A., Li, HF., Suresh Kumar, S., Alarfaj, A.A., Munusamy, M.A. (2018). Stem Cell Culture on Polymer Hydrogels. In: Thakur, V., Thakur, M. (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9_14

Download citation

Publish with us

Policies and ethics