Skip to main content

Self-assembling Hydrogels from pH-Responsive Ionic Block Copolymers

  • Chapter
  • First Online:
Hydrogels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Hydrogels are three-dimensional (3D) soft materials that consist of a solid matrix (usually a three-dimensional network) entrapping high content of water (more than 90 wt%). This remarkable feature makes them suitable for many applications especially in medicine as drug carriers and tissue engineering scaffolds. As far as polymeric matrices are concerned, two main strategies for achieving 3D network structures can be distinguished. The first one relies on the covalent bonding of hydrophilic polymer chains, leading to hydrogels referred as chemical networks. The second approach deals with the self-assembly of tailor-made segmented macromolecules via reversible weak interactions, namely hydrophobic, ionic, π–π staking, and so on, that leads to the so-called self-assembling hydrogels. The use of reversible (physical) cross-links allows the design of “smart” soft materials that can response to their environment (e.g., pH, ionic strength, temperature, shear). This chapter is devoted to the self-assembling hydrogels arising from associative block copolymers bearing ionic or ionogenic blocks, namely polyelectrolytes or polyampholytes. This specific feature endows the hydrogels with responsiveness to pH and ionic strength which make them attractive soft materials for potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelopoulos SA, Tsitsilianis C (2006) Thermo-reversible hydrogels based on poly(N,N-diethylacrylamide)-block-poly(acrylicacid)-block-poly(N,N-diethyl acrylamide) double hydrophilic triblock copolymer. Macromol Chem Phys 207:2188–2194

    Article  CAS  Google Scholar 

  • Audu DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ, Hawker CJ, Fredickson GH (2015) Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter 2015:1214–1225

    Article  CAS  Google Scholar 

  • Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O (2011) pH-triggered reversible sol–gel transition in aqueous solutions of amphiphilic gradient copolymers. Soft Matter 7:10824–10833

    Article  CAS  Google Scholar 

  • Bossard F, Sfika V, Tsitsilianis C (2004) Rheological properties of physical gel formed by triblock polyampholyte in salt-free aqueous solutions. Macromolecules 37:3899–3904

    Article  CAS  Google Scholar 

  • Bossard F, Tsitsilianis C, Yannopoulos SN, Petekidis G, Sfika V (2005) A novel thermo-thickening phenomenon exhibited by a triblock polyampholyte in aqueous salt-free solutions. Macromolecules 38:2883–2888

    Article  CAS  Google Scholar 

  • Bossard F, Aubry T, Gotzamanis GT, Tsitsilianis C (2006) pH-Tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2:510–516

    Article  CAS  Google Scholar 

  • Charbonneau C, Chassenieux C, Colombani O, Nicolai T (2011) Controlling the dynamics of self-assembled triblock copolymer networks via the pH. Macromolecules 44:4487–4495

    Article  CAS  Google Scholar 

  • Chassenieux C, Tsitsilianis C (2016) Recent trends on pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators. Soft Matter 12:1344–1359

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Zhuang X, He C, Wei Y, Chen X (2015) High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomater 11:183–190

    Article  CAS  PubMed  Google Scholar 

  • Dyakonova MA, Stavrouli N, Popescu M-T, Kyriakos K, Grillo I, Philipp M, Jaksch S, Tsitsilianis C, Papadakis CM (2014) Physical Hydrogels via charge driven self-organization of a triblock polyampholyte: rheological and structural investigations. Macromolecules 47:7561–7572

    Article  CAS  Google Scholar 

  • Dyakonova M, Berezkin AV, Kyriakos K, Gkermpoura S, Popescu M-T, Filippov SK, Stepanek P, Di Z, Tsitsilianis C, Papadakis CM (2015) Salt-induced changes in triblock polyampholyte hydrogels: computer simulations and rheological, structural, and dynamic characterization. Macromolecules 48:8177–8189

    Article  CAS  Google Scholar 

  • Dyakonova MA, Gotzamanis G, Niebuur B-J, Vishnevetskaya NS, Raftopoulos KN, Di Z, Filippov SK, Tsitsilianis C, Papadakis CM (2017) pH Responsiveness of hydrogels formed by telechelic polyampholytes. Soft Matter 13:3568–3579

    Google Scholar 

  • Ghelichi M, Qazvini NT (2016) Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter 12:4611–4620

    Article  CAS  PubMed  Google Scholar 

  • Gotzamanis GT, Tsitsilianis C, Hadjiyannakou SC, Patrickios CS, Lupitskyy R, Minko S (2006) Cationic telechelic polyelectrolytes: synthesis by group transfer polymerization and self-organization in aqueous media. Macromolecules 39:678–683

    Article  CAS  Google Scholar 

  • Gotzamanis GT, Papadimitriou K, Tsitsilianis C (2016) Design of a C-b-(A-co-B)-b-C telechelic polyampholyte pH-responsive gelator. Polym Chem 7:2121–2129

    Article  CAS  Google Scholar 

  • Halperin A, Alexander S (1989) Polymeric micelles: their relaxation kinetics. Macromolecules 22:2403–2412

    Article  CAS  Google Scholar 

  • Henderson KJ, Tian TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201

    Article  CAS  Google Scholar 

  • Hietala S, Monomen P, Strandman S, Järvi P, Torkkeli M, Jankova K, Hvilsted S, Tenhu H (2007) Synthesis and rheological properties of an associative star polymers in aqueous solutions. Polymer 48:4087–4096

    Google Scholar 

  • Hietala S, Strandman S, Järvi P, Torkkeli M, Jankova K, Hvilsted S, Tenhu H (2009) Rheological properties of associative star polymers in aqueous solutions: effect of hydrophobe length and polymer topology. Macromolecules 42:1726–1732

    Google Scholar 

  • Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ (2011) Tunable, high modulus hydrogels driven by ionic coacervation. Adv Mater 23:2327–2331

    Article  CAS  PubMed  Google Scholar 

  • Iatridi Z, Mattheolabakis G, Avgoustakis K, Tsitsilianis C (2011) Self-assembly and drug delivery studies of pH/thermo-sensitive polyampholytic (A-co-B)-b-C-b-(A-co-B) segmented terpolymers. Soft Matter 7:11160–11168

    Article  CAS  Google Scholar 

  • Ishii S, Kaneko J, Nagasaki Y (2015) Dual stimuli-responsive redox-active injectable gel by polyion complex based flower micelles for biomedical applications. Macromolecules 48:3088–3094

    Article  CAS  Google Scholar 

  • Kahveci MU, Yagci Y, Avgeropoulos A, Tsitsilianis C (2016) Polymeric materials—well defined block copolymers. In: Reference module in materials science and materials engineering. Elsevier, Amsterdam

    Google Scholar 

  • Katsampas I, Tsitsilianis C (2005) Hierarchical self-organization of ABC terpolymer constituted of a long polyelectrolyte end-capped by different hydrophobic blocks. Macromolecules 38:1307–1314

    Article  CAS  Google Scholar 

  • Katsampas I, Roiter Y, Minko S, Tsitsilianis C (2005) Multifunctional stimuli responsive ABC terpolymers: from 3-compartment micelles to 3-dimentional network. Macromol Rapid Commun 26:1371–1376

    Article  CAS  Google Scholar 

  • Koetting MC, Peters JP, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng R 93:1–49

    Article  Google Scholar 

  • Krogstad DV, Lynd NA, Choi S-H, Spruell JM, Hawker CJ, Kramer EJ, Tirrell MV (2013) Effects of polymer and salt concentration on the structure and properties of triblock copolymer coacervate hydrogels. Macromolecules 46:1512–1518

    Article  CAS  Google Scholar 

  • Krogstad DV, Lynd NA, Miyajim D, Gopez J, Hawker CJ, Kramer EJ, Tirrell MV (2014) Structural evolution of polyelectrolyte complex core micelles and ordered-phase bulk materials. Macromolecules 47:8026–8032

    Article  CAS  Google Scholar 

  • Kujawa P, Audibert-Hayet A, Selb J, Candau F (2004) Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions. J Polym Sci Part B Polym Phys 42:1640–1655

    Article  CAS  Google Scholar 

  • Kujawa P, Audibert-Hayet A, Selb J, Candau F (2006) Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules 39:384–392

    Article  CAS  Google Scholar 

  • Kumar SK, Panagiotopoulos AZ (1999) Thermodynamics of reversibly associating polymer solutions. Phys Rev Lett 82:5060–5064

    Article  CAS  Google Scholar 

  • Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Multiresponsive reversible gels based on charge-driven assembly. Angew Chem Int Ed 49:708–711

    Article  CAS  Google Scholar 

  • Lemmers M, Spruijt E, Beun L, Fokkink R, Leermakers F, Portale G, Cohen Stuart MA, van der Gucht J (2012) The influence of charge ratio on transient networks of polyelectrolyte complex micelles. Soft Matter 8:104–117

    Article  CAS  Google Scholar 

  • Li Y, Sun Z, Shi T, An L (2004) Conformation studies on sol-gel transition in triblock copolymer solutions. J Chem Phys 121:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tang Y, Narain R, Lewis AL, Armes SP (2005) Biomimetic stimulus-responsive star diblock gelators. Langmuir 21:9946–9954

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Cao S, Chen X, Wu W, Li J (2013) Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering. Biomacromolecules 14:2206–2214

    Article  CAS  PubMed  Google Scholar 

  • Lomas H, Massignani M, Abdullah KA, Canton I, Lo Presti C, MacNeil S, Du J, Blanazs A, Madsen J, Armes SP, Lewis AL, Battaglia G (2008) Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss 139:143–159

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Tang Y, Billingham NC, Armes SP (2003) Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 4:864–868

    Article  CAS  PubMed  Google Scholar 

  • Matyjaszewski K, Gnanou Y, Leibler L (2007) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley-vch, Weinheim

    Google Scholar 

  • Medsen J, Armes SP (2012) (Meth)acrylic stimulus-responsive block copolymer hyrogels. Soft Matter 8:592–605

    Article  Google Scholar 

  • Nguyen-Misra M, Mattice WL (1995) Micellization and gelation of symmetric triblock copolymers with insoluble blocks. Macromolecules 28:1444–1457

    Article  CAS  Google Scholar 

  • Nicolai T, Colombani O, Chassenieux Ch (2010) Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6:3111–3118

    Article  CAS  Google Scholar 

  • Popescu M-T, Athanasoulias I, Tsitsilianis C, Hadjiantoniou NA, Patrickios CS (2010) Reversible hydrogels from amphiphilic polyelectrolyte model multiblock copolymers: the importance of macromolecular topology. Soft Matter 6:5417–5424

    Article  CAS  Google Scholar 

  • Popescu M-T, Mourtas S, Pampalakis G, Antimisiaris SG, Tsitsilianis C (2011) pH-Responsive hydrogel/liposome soft nanocomposites for tuning drug release. Biomacromolecules 12:3023–3030

    Article  CAS  PubMed  Google Scholar 

  • Popescu M-T, Tsitsilianis C, Papadakis CM, Adelsberger J, Balog S, Busch P, Hadjiantoniou NA, Patrickios CS (2012) Hydrogels: an unusual pH-response. Macromolecules 45:3523–3530

    Article  CAS  Google Scholar 

  • Potemkin II, Vasilevskaya VV, Khokhlov AR (1999) Associating polyelectrolytes: finite size cluster stabilization versus gel formation. J Chem Phys 11:2809–2817

    Article  Google Scholar 

  • Reinicke S, Schmelz J, Lapp A, Karg M, Hellweg T, Schmalz H (2009) Smart hydrogels based on double responsive triblock terpolymers. Soft Matter 5:2648–2657

    CAS  Google Scholar 

  • Rubinstein M, Dobrynin AV (1997) Solutions of associative polymers. Trends Polym Sci 5:181–186

    CAS  Google Scholar 

  • Schmalz A, Schmalz H, Müller AHE (2012) Smart hydrogels based on responsive star-block copolymers. Soft Matter 8:9436–9445

    Article  CAS  Google Scholar 

  • Sfika V, Tsitsilianis C (2003) Association phenomena of poly(acrylic acid)-b-poly(2-vinylpyridine)-b-poly(acrylic acid) triblock polyampholyte in aqueous solutions: from transient network to compact micelles. Macromolecules 36:4983–4988

    Article  CAS  Google Scholar 

  • Shedge A, Colombani O, Nicolai T, Chassenieux C (2014) Charge dependent dynamics of transient networks and hydrogels formed by self-assembled pH-sensitive triblock copolyelectrolytes. Macromolecules 47:2439–2444

    Article  CAS  Google Scholar 

  • Stavrouli N, Aubry T, Tsitsilianis C (2008a) Polymer rheological properties of ABA telechelic polyelectrolyte and ABA polyampholyte reversible hydrogels: a comparative study. Polymer 49:1249–1256

    Article  CAS  Google Scholar 

  • Stavrouli N, Katsampas I, Angelopoulos S, Tsitsilianis C (2008b) pH/Thermo-sensitive hydrogels formed at low pH by a PMMA-PAA-P2VP-PAA-PMMA pentablock terpolymer. Macromol Rapid Commun 29:130–135

    Article  CAS  Google Scholar 

  • Taktak FF, Bütün V (2010) Synthesis and physical gels of pH- and thermo responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer 51:3618–3626

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  CAS  PubMed  Google Scholar 

  • Tsitsilianis C (2010) Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 6:2372–2388

    Article  CAS  Google Scholar 

  • Tsitsilianis C, Iliopoulos I (2002) Viscoelastic properties of physical gels formed by associative telechelic polyelectrolytes in aqueous media. Macromolecules 35:3662–3667

    Article  CAS  Google Scholar 

  • Tsitsilianis C, Iliopoulos I, Ducouret G (2000a) An associative polyelectrolyte end-capped with short polystyrene chains. Synthesis and rheological behavior. Macromolecules 33:2936–2943

    Article  CAS  Google Scholar 

  • Tsitsilianis C, Katsampas I, Sfika V (2000b) ABC heterotelechelic associative polyelectrolytes. Rheological behavior in aqueous media. Macromolecules 33:9054–9059

    Article  CAS  Google Scholar 

  • Tsitsilianis C, Roiter Y, Katsampas I, Minko M (2008a) Diversity of nanostructured self-assemblies from a pH-responsive ABC terpolymer in aqueous media. Macromolecules 41:925–934

    Article  CAS  Google Scholar 

  • Tsitsilianis C, Stavrouli N, Bocharova V, Angelopoulo S, Kiriy A, Katsampas I, Stamm M (2008b) Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture. Polymer 49:2996–3006

    Article  CAS  Google Scholar 

  • Tsitsilianis C, Aubry T, Iliopoulos I, Norvez S (2010) Effect of DMF on the rheological properties of telechelic polyelectrolyte hydrogels. Macromolecules 43:7779–7784

    Article  CAS  Google Scholar 

  • Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Intern. J. of Pharmaceutics 355:1–18

    Article  CAS  Google Scholar 

  • Winnik MA, Yekta A (1997) Associative polymers in aqueous solution. Curr Opin Coll Interface Sci 2:424–436

    Article  CAS  Google Scholar 

  • Xu C, Kopeček J (2007) Self-assembling hydrogels. J Polym Bull 58:53–63

    Article  CAS  Google Scholar 

  • Zhang R, Shi T, An L, Sun Z, Tong T (2010) Conformational study on sol-gel transition in telechelic polyelectrolytes. J Phys Chem B 114:3449–3456

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Shi T, Li H, An L (2011) Effect of the concentration on sol-gel transition in telechelic polyelectrolytes. J Chem Phys 134(034903):1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Tsitsilianis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsitsilianis, C. (2018). Self-assembling Hydrogels from pH-Responsive Ionic Block Copolymers. In: Thakur, V., Thakur, M. (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9_10

Download citation

Publish with us

Policies and ethics