Skip to main content

Use of Salicylic Acid and Related Compounds to Improve the Abiotic Stress Tolerance of Plants: Practical Aspects

  • Chapter
  • First Online:

Abstract

Due to the urgent and pressing need in the twenty-first century to develop sustainable ways to safeguard crop yields in a way requiring low costs and fewer chemicals, the demand has been increasing in recent years for natural, biologically active materials which can be used to improve the nutritional and agronomic traits of agriculturally important food and feed crops. A wide range of experiments has been performed to find solutions which are applicable in environment-safe farming. One promising compound is salicylic acid, which has been proved to play a role in abiotic and biotic stress response mechanisms. The present chapter gives a short overview of selected results, focusing mainly on the practical aspects of its use and possible challenges for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad I, Basra SMA, Wahid A (2014) Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize under at low temperature stress. Int J Agric Biol 16:825–830

    CAS  Google Scholar 

  • Alibert G, Boudet A, Ranjeva R (1972) Studies on the enzymes catalysts of biosynthesis of phenolic acids in Quercus pedunculata. III. Sequential formation of cinnamic, p-coumaric and caffeic acids from phenylalanine by isolated cell organelles. Physiol Plant 27:240–243

    Article  CAS  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Bi HH, Zeng RS, Su LM, An M, Luo SM (2007) Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol 33:1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Saa S (2015) Biostimulants in agriculture. Front Plant Sci 6:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell Online 6:1583–1592

    Article  CAS  Google Scholar 

  • Cao DD, Hu J, Gao CH, Guan YJ, Zhang S, Xiao JF (2008) Chilling tolerance of maize (Zea mays L.) can be improved by seed soaking in putrescine. Seed Sci Technol 36:191–197

    Article  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Sign Behav 4:493–496

    Article  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghazijahani N, Hadavi E, Jeong BR (2014) Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.) Front Plant Sci 5:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK, Balázs E, Szalai G (2016a) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci 7:1447

    Article  PubMed  PubMed Central  Google Scholar 

  • Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016b) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.) PLoS One 11:e0160157

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada AM (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostl Vyr 47:444–450

    CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Reg 26:290–300

    Article  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Janda T, Majláth I, Szalai G (2014) Interaction of temperature and light in the development of freezing tolerance in plants. J Plant Growth Regul 33:460–469

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khandaker L, Masum Akond ASMG, Oba S (2011) Foliar application of salicylic acid improved the growth, yield and leaf s bioactive compounds in red amaranth (Amaranthus tricolor L.) Veg Crops Res Bull 74:77–86

    Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Larque-Saavedra A (1978) The antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris. Physiol Plant 43:126–128

    Article  CAS  Google Scholar 

  • Larque-Saavedra A (1979) Stomatal closure in response to acetylsalicylic acid treatment. Z Pflanzenphys 93:371–375

    Article  CAS  Google Scholar 

  • Mahboob W, Rehman HU, Basra SMA, Afzal I, Abbas MA, Naeem M, Abbas M (2015) Seed priming improves the performance of late sown spring maize (Zea mays) through better crop stand and physiological attributes. Int J Agric Biol 17:491–498

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 49:79–90

    Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signalling. Plant Sci 237:16–23

    Article  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  CAS  PubMed  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Rehman H, Iqbal H, Basra SMA, Afzal I, Farooq M, Wakeel A, Ning W (2015) Seed priming improves early seedling vigor, growth and productivity of spring maize. J Int Agric 14:1745–1754

    Article  Google Scholar 

  • Ruan S, Xue Q, Tylkowska K (2002) The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci Technol 30:61–67

    Google Scholar 

  • Sasheva P, Yordanova R, Janda T, Szalai G, Maslenkova L (2013) Study of primary photosynthetic reactions in winter wheat cultivars after cold hardening and freezing. Effect of salicylic acid. Bulg J Agric Sci 19:45–48

    Google Scholar 

  • Schroer K, Rauch BH (2013) Aspirin and prevention of colorectal carcinomas. Internist 54:884–891

    Article  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Szalai G, Tari I, Janda T, Pestenácz A, Páldi E (2000) Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol Plant 43:637–640

    Article  CAS  Google Scholar 

  • Szalai G, Horgosi S, Soós V, Majláth I, Balázs E, Janda T (2011) Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol 168:213–219

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, Pál M, Árendás T, Janda T (2016) Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cer Res Commun 44:537–548

    Article  Google Scholar 

  • Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    Article  PubMed  PubMed Central  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase in required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Research, Development and Innovation Office (K108838).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Janda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janda, T., Pál, M., Darkó, É., Szalai, G. (2017). Use of Salicylic Acid and Related Compounds to Improve the Abiotic Stress Tolerance of Plants: Practical Aspects. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_3

Download citation

Publish with us

Policies and ethics