Skip to main content

Hemoglobin-Based Molecular Assembly

  • Chapter
  • First Online:
  • 1064 Accesses

Abstract

Development of protein-based molecular devices is an active area of research due to their broad applications in biotechnology, biorelated chemistry, bioelectronics, and biomedical engineering. Hemoglobin (Hb) is a physiologically important oxygen-transport metalloprotein present in the red blood cells. In this chapter, we present the recent development in fabrication and tailoring of a variety of hemoglobin protein shells via covalent layer-by-layer (LbL) assembly combined with template technique. Also, the developed strategy is effective and flexible, advantageous for avoiding denaturation of proteins. The as-fabricated Hb shells have better applications in drug delivery and controlled release, biosensors, biocatalysis, and bioreactors due to the enhancement of biological availability. In view of the carrying-oxygen function of Hb protein in blood, we particularly focus on the potential applications of hemoglobin-based nanoarchitectonic assemblies as artificial blood substitutes. These novel oxygen carriers exhibit advantages over traditional carriers and will greatly promote research on reliable and feasible artificial blood substitutes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. He Q, Cui Y, Li JB (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38:2292–2303

    Article  Google Scholar 

  2. Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–721

    Article  Google Scholar 

  3. Wendell DW, Patti J, Montemagno CD (2006) Using biological inspiration to engineer functional nanostructured materials. Small 2:1324–1329

    Article  Google Scholar 

  4. Lowe CR (2000) Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 10:428–432

    Article  Google Scholar 

  5. Biagioli M, Pinto M, Cesselli D et al (2009) Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci USA 106:15454–15459

    Article  Google Scholar 

  6. Linberg R, Conover CD, Shum KL et al (1998) Hemoglobin based oxygen carriers: how much methemoglobin is too much? Artif Cells Blood Substit Immobil Biotechnol 26:133–148

    Article  Google Scholar 

  7. Guyton AC (2005) Medical physiology, 11th edn, p 509

    Google Scholar 

  8. Shutava TG, Kommireddy DS, Lvov YM (2006) Polyelectrolyte/enzyme multilayer as functionalprotective nano/barrier in oxidizing media. J Am Chem Soc 128:9926–9934

    Article  Google Scholar 

  9. Uto K, Yamamoto K, Kishimoto N et al (2008) J Mater Chem 18:3876–3884

    Article  Google Scholar 

  10. Hwang I, Baek K, Jung M et al (2007) Noncovalent immobilization of proteins on a solid surface by cucurbit[7]uril-ferrocenemethylammonium pair, a potential replacement of Biotin−Avidin Pair. J Am Chem Soc 129:4170–4171

    Article  Google Scholar 

  11. Wang Q, Yang Z, Gao Y et al (2008) Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter 4:550–553

    Article  Google Scholar 

  12. Onda M, Lvov Y, Ariga K et al (1996) Sequential reactions by glucose oxidase/peroxidase molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51:163–167

    Article  Google Scholar 

  13. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  Google Scholar 

  14. Johnston APR, Cortez C, Angelatos AS et al (2006) Layer-by-layer engineered capsules and their applications. Curr Opin Colloid Interface Sci 11:203–209

    Article  Google Scholar 

  15. Wang KW, He Q, Cui Y et al (2007) Photosensitive drugs encapsulizated by biodegradable microcapsules applied for photodynamic Therapy. J Mater Chem 17:4018–4021

    Article  Google Scholar 

  16. Mercato LLD, Rivera-Gil P, Abbasi AZ et al (2010) LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale 2:458–467

    Article  Google Scholar 

  17. Tang Z, Wang Y, Podsiadlo P et al (2007) Biomedical application of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 19:906–928

    Article  Google Scholar 

  18. De Geest BG, Sanders NN, Sukhorukov GB et al (2007) Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 36:636–649

    Article  Google Scholar 

  19. Qi W, Wang AH, Yang Y et al (2010) The lectin binding and targetable cellular uptake of lipid-coated polysaccharide microcapsules. J Mater Chem 20:2121–2127

    Article  Google Scholar 

  20. Caruso F, Trau D, Möhwald H et al (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16:1485–1488

    Article  Google Scholar 

  21. Tong WJ, Gao CY, Möhwald H (2006) Single polyelectrolyte microcapsules fabricated by glutaraldehyde-mediated covalent Layer-by-Layer assembly. Macromol Rapid Commun 27:2078–2083

    Article  Google Scholar 

  22. Skirtach AG, Déjugnat C, Braun D et al (2005) The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 5:1371–1377

    Article  Google Scholar 

  23. Qi W, Duan L, Li JB (2011) Fabrication of glucose-sensitive protein microcapsules and their applications. Soft Matter 7:1571–1576

    Article  Google Scholar 

  24. Duan L, He Q, Yan XH et al (2007) Hemoglobin protein hollow shells fabricated through covalent Layer-by-Layer assembly. Biochem Biophys Res Commun 354:357–362

    Article  Google Scholar 

  25. Qi W, Duan L, Wang KW et al (2008) Motor protein CF0F1 reconstituted in lipid-Coated hemoglobin microcapsules for ATP synthesis. Adv Mater 20:601–605

    Article  Google Scholar 

  26. Duan L, Qi W, Yan XH et al (2009) Proton gradients produced by glucose oxidase microcapsules containing motor F0F1-ATPase for continuous ATP biosynthesis. J Phys Chem B 113:395–399

    Article  Google Scholar 

  27. He Q, Tian Y, Möhwald H et al (2009) Biointerfacing luminescent nanotubes. Soft Matter 5:300–303

    Article  Google Scholar 

  28. Shan E, Han HX, Cosnier S (2007) Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromol 8:3041–3046

    Article  Google Scholar 

  29. Qi W, Duan L, Yan XH et al (2009) Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromol 10:1212–1216

    Article  Google Scholar 

  30. Qi W, Yan XH, Fei JB et al (2009) Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials 30:2799–2806

    Article  Google Scholar 

  31. Choi HJ, Montemagno CD (2005) Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett 5:2538–2542

    Article  Google Scholar 

  32. Capaldi RA, Aggeler R (2002) Mechanism of the F0F1-ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160

    Article  Google Scholar 

  33. Fischer S, Etzold C, Turina P et al (1994) ATP synthesis catalyzed by the ATP synthase of Escherichia coli reconstituted into liposomes. Eur J Biochem 225:167–172

    Article  Google Scholar 

  34. Steinberg-Yfrach G, Rigaud JL, Durantini EN et al (1998) Light-driven production of ATP catalyzed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392:479–482

    Article  Google Scholar 

  35. Luo TJM, Soong R, Lan E et al (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat Mater 4:220–224

    Article  Google Scholar 

  36. Duan L, He Q, Wang KW et al (2007) Adenosine triphosphate biosynthesis catalyzed by FoF1 ATP synthase assembled in polymer microcapsules. Angew Chem Int Ed 46:6996–7000

    Article  Google Scholar 

  37. Richard P, Rigaud JL, Gräber P (1990) Reconstitution of CF0F1 into liposomes using a new reconstitution procedure. Eur J Biochem 193:921–925

    Article  Google Scholar 

  38. Buehler PW, D’Agnillo F, Schaer DJ (2010) Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med 16:447–457

    Article  Google Scholar 

  39. Liu LM, Zeng M, Stamler JS (1999) Hemoglobin induction in mouse macrophages. Proc Natl Acad Sci USA 96:6643–6647

    Article  Google Scholar 

  40. Widmer CC, Pereira CP, Gehrig P et al (2010) Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase. Antioxid Redox Signal 12:185–198

    Article  Google Scholar 

  41. Kameta N, Minamikawa H, Masuda M (2011) Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter 7:4539–4561

    Article  Google Scholar 

  42. Komatsu T, Qu X, Ihara H et al (2011) Virus trap in human serum albumin nanotube. J Am Chem Soc 133:3246–3248

    Article  Google Scholar 

  43. Geng Y, Dalhaimer P, Cai S et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  Google Scholar 

  44. Chen B, Jia Y, Zhao J et al (2013) Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J Phys Chem C 117:19751–19758

    Google Scholar 

  45. Pape A (2007) Alternatives to allogeneic blood transfusions. Best Pract Res Clin Anaesthesiol 21:221–239

    Article  Google Scholar 

  46. Ness PM, Cushing MM (2007) Oxygen therapeutics pursuit of an alternative to the donor red blood cell. Arch Pathol Lab Med 131:734–741

    Google Scholar 

  47. Modery-Pawlowski CL, Tian LL, Pan V et al (2013) Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromol 14:939–948

    Article  Google Scholar 

  48. Chang TMS (2004) Hemoglobin-based red blood cell substitutes. Artif Organs 28:789–794

    Article  Google Scholar 

  49. Alayash AI (2014) Blood substitutes why haven’t we been more successful. Trends Biotechnol 32:177–186

    Article  Google Scholar 

  50. Jia Y, Duan L, Li JB (2016) Hemoglobin-based nanoarchitectonic assemblies as oxygen carriers. Adv Mater 28:1312–1318

    Article  Google Scholar 

  51. Nadithe V, Bae YH (2010) Synthesis and characterization of hemoglobin conjugates with antioxidant enzymes via poly(ethylene glycol) cross-linker (Hb-SOD-CAT) for protection from free radical stress. Int J Biol Macromol 47:603–613

    Article  Google Scholar 

  52. Hathazi D, Mott AC, Vaida A et al (2014) Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes. Biomacromol 15:1920–1927

    Article  Google Scholar 

  53. Simoni J, Simoni G, Wesson DE et al (2012) ATP-adenosine-glutathione cross-linked hemoglobin as clinically useful oxygen carrier. Curr Drug Discov Technol 9:173–187

    Article  Google Scholar 

  54. Chang TMS (2010) Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:418–430

    Article  Google Scholar 

  55. Rameez S, Alosta H, Palmer AF (2008) Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier. Bioconjugate Chem 19:1025–1032

    Article  Google Scholar 

  56. Ariga K, Yamauchi Y, Rydzek G et al (2014) Layer-by-layer nanoarchitectonics: invention innovation and evolution. Chem Lett 43:36–68

    Article  Google Scholar 

  57. Duan L, Yan XH, Wang AH et al (2012) Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano 6:6897–6904

    Article  Google Scholar 

  58. Jia Y, Cui Y, Fei JB et al (2012) Construction and evaluation of hemoglobin-based capsules as blood substitutes. Adv Funct Mater 22:1446–1453

    Article  Google Scholar 

  59. Duan L, Du LL, Jia Y et al (2015) High impact of uranyl ions on carrying-releasing oxygen capability of hemoglobin-based blood substitutes. Chem Eur J 21:520–525

    Article  Google Scholar 

  60. Jia Y, Li JB (2015) Molecular assembly of schiff base interactions: construction and application. Chem Rev 115:1597–1621

    Article  Google Scholar 

  61. Squires JE (2002) Artificial blood. Science 295:1002–1005

    Article  Google Scholar 

  62. Chang TMS, D’Agnillo F, Yu WP et al (2000) Two future generations of blood substitutes based on polyhemoglobin–SOD–catalase and nanoencapsulation. Adv Drug Deliv Rev 40:213–218

    Article  Google Scholar 

  63. Dusseault J, Leblond FA, Robitaille R et al (2005) Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials 26:1515–1522

    Article  Google Scholar 

  64. Zhao J, Liu CS, Yuan Y et al (2007) Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers. Biomaterials 28:1414–1422

    Article  Google Scholar 

  65. Sun J, Huang YB, Shi Q et al (2009) Oxygen carrier based on hemoglobin/poly(L-lysine)-block-poly(L-phenylalanine) vesicles. Langmuir 25:13726–13729

    Article  Google Scholar 

  66. Komatsu T, Matsukawa Y, Tsuchida E (2001) Reaction of nitric oxide with synthetic hemoprotein, human serum albumin incorporating tetraphenylporphinatoiron(II) derivatives. Bioconjugate Chem 12:71–75

    Article  Google Scholar 

  67. Yang Y, Jia Y, Gao L et al (2011) Fabrication of autofluorescent protein coated mesoporous silica nanoparticles for biological application. Chem Commun 47:12167–12169

    Article  Google Scholar 

  68. Monier M, Ayad DM, Wei Y et al (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 77:962–970

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Duan or Junbai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Duan, L., Jia, Y., Li, J. (2017). Hemoglobin-Based Molecular Assembly . In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_5

Download citation

Publish with us

Policies and ethics