Skip to main content

Advantages of Self-assembled Supramolecular Polymers Toward Biological Applications

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems

Abstract

Supramolecular self-assembly provides a means of achieving “bottom-up” fabrication of nanoscale materials. Their mechanical properties and functionality arise from the assembly of relatively simple molecular building blocks. These materials have selective affinity to different interfaces, high capacity for interfacial adsorption, nanostructure, and spontaneous formation of unique nano-self-assemblies which exhibit remarkable simplicity and biocompatibility. Due to these attractive features, supramolecular nanostructures, particularly peptide-based, have recently been explored as effective nanomaterials in applications ranging from controlled release and drug delivery, nano-fabrication, skin care, biomineralization, sensing, antimicrobial materials, and tissue engineering. This range of applications is facilitated by the diverse primary sequences of the short peptides, which can be either biomimetic or de novo designed. Thus, their self-assembling mechanistic processes and nanostructures also vary enormously. This chapter highlights recent advances in studying self-assembled peptide systems, focusing on the formation of different nanostructures and their applications in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SAP:

Self-assembling peptide

CPTNs:

Cyclic peptide nanotubes

CPs:

Cyclic peptides

PAs:

Peptide amphiphiles

RGD:

Arginine–glycine–aspartic acid

CryoTEM:

Cryogenic transmission electron microscopy

CMC:

Critical micelle concentration

DOX:

Drug doxorubicin

CPP:

Cell penetrating peptide

GQDs:

Graphene quantum dots

FF:

Diphenylalanine

Fmoc:

Fluorenylmethoxycarbonyl

Boc-FF:

Tert-Butyloxycarbonyl-diphenylalnine

References

  1. Lehn JM (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci USA 99:4763–4768

    Article  Google Scholar 

  2. Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675

    Article  Google Scholar 

  3. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  Google Scholar 

  4. Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339

    Article  Google Scholar 

  5. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18

    Article  Google Scholar 

  6. Mandal D, Nasrolahi Shirazi A, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12:3544–3561

    Article  Google Scholar 

  7. Collier JH, Segura T (2011) Evolving the use of peptides as components of biomaterials. Biomaterials 32:4198–4204

    Article  Google Scholar 

  8. Yu CY, Huang W, Li ZP, Lei XY, He DX, Sun L (2016) Progress in self-assembling peptide-based nanomaterials for biomedical applications. Curr Top Med Chem 16:281–290

    Article  Google Scholar 

  9. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  Google Scholar 

  10. Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    Google Scholar 

  11. Barbosa SC, Nobre TM, Volpati D, Ciancaglini P, Cilli EM, Lorenzón EN, Oliveira ON Jr (2016) The importance of cyclic structure for Labaditin on its antimicrobial activity against Staphylococcus aureus. Colloids Surf B Biointerfaces 148:453–459

    Article  Google Scholar 

  12. Roscia G, Falciani C, Bracci L, Pini A (2013) The development of antimicrobial peptides as new antibacterial drugs. Curr Protein Pept Sci 14:641–649

    Article  Google Scholar 

  13. Hancock REW, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149

    Article  Google Scholar 

  14. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  Google Scholar 

  15. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochem Biophys Acta 1462:11–28

    Article  Google Scholar 

  16. Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S (2012) Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 41:6023–6041

    Article  Google Scholar 

  17. Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature 412:452–455

    Article  Google Scholar 

  18. Rodriguez-Vazquez N, Ozores HL, Guerra A, Gonzalez-Freire E, Fuertes A, Panciera M, Priegue JM, Outeiral J, Montenegro J, Garcia-Fandino R, Amorin M, Granja JR (2014) Membrane-targeted self-assembling cyclic peptide nanotubes. Curr Top Med Chem 14:2647–2661

    Article  Google Scholar 

  19. Montenegro J, Ghadiri MR, Granja JR (2013) Ion channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46:2955–2965

    Article  Google Scholar 

  20. Ghadiri MR, Granja JR, Buehler LK (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–304

    Article  Google Scholar 

  21. Wang D, Guo L, Zhang J, Jones LR, Chen Z, Pritchard C, Roeske RW (2001) Artificial ion channels formed by a synthetic cyclic peptide. J Pept Res Official J Am Pept Soc 57:301–306

    Article  Google Scholar 

  22. Motesharei K, Ghadiri MR (1997) Diffusion-limited size-selective ion sensing based on SAM-supported peptide nanotubes. J Am Chem Soc 119:11306–11312

    Article  Google Scholar 

  23. Perez-Alvite MJ, Mosquera M, Castedo L, Granja JR (2011) Toward the rational design of molecular rotors ion sensors based on alpha, gamma-cyclic peptide dimers. Amino Acids 41:621–628

    Article  Google Scholar 

  24. Yang CT, Han J, Gu M, Liu J, Li Y, Huang Z, Yu HZ, Hu S, Wang X (2015) Fluorescent recognition of uranyl ions by a phosphorylated cyclic peptide. Chem Commun (Cambridge, England) 51:11769–11772

    Google Scholar 

  25. Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Antiviral cyclic d, l-α-peptides: Targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13:5145–5153

    Article  Google Scholar 

  26. Vollmer MS, Clark TD, Steinem C, Ghadiri MR (1999) Photoswitchable hydrogen-bonding in self-organized cylindrical peptide systems. Angew Chem Int Ed 38:1598–1601

    Article  Google Scholar 

  27. Steinem C, Janshoff A, Vollmer MS, Ghadiri MR (1999) Reversible photoisomerization of self-organized cylindrical peptide assemblies at air–water and solid interfaces. Langmuir 15:3956–3964

    Article  Google Scholar 

  28. Jung JP, Gasiorowski JZ, Collier JH (2010) Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers 94:49–59

    Article  Google Scholar 

  29. Behanna HA, Donners JJ, Gordon AC, Stupp SI (2005) Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 127:1193–1200

    Article  Google Scholar 

  30. Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298

    Article  Google Scholar 

  31. Matson JB, Newcomb CJ, Bitton R, Stupp SI (2012) Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter 8:3586–3595

    Article  Google Scholar 

  32. Webber MJ, Matson JB, Tamboli VK, Stupp SI (2012) Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33:6823–6832

    Article  Google Scholar 

  33. Moyer TJ, Kassam HA, Bahnson ES, Morgan CE, Tantakitti F, Chew TL, Kibbe MR, Stupp SI (2015) Shape-dependent targeting of injured blood vessels by peptide amphiphile supramolecular nanostructures. Small (Weinheim an der Bergstrasse, Germany) 11:2750–2755

    Google Scholar 

  34. Deshmukh SA, Solomon LA, Kamath G, Fry HC, Sankaranarayanan SKRS (2016) Water ordering controls the dynamic equilibrium of micelle–fibre formation in self-assembly of peptide amphiphiles. Nat Commun 7:12367

    Article  Google Scholar 

  35. da Silva RMP, van der Zwaag D, Albertazzi L, Lee SS, Meijer EW, Stupp SI (2016) Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat Commun 7:11561

    Article  Google Scholar 

  36. Zhao X (2009) Design of self-assembling surfactant-like peptides and their applications. Curr Opin Colloid Interface Sci 14:340–348

    Article  Google Scholar 

  37. von Maltzahn G, Vauthey S, Santoso S, Zhang S (2003) Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19:4332–4337

    Article  Google Scholar 

  38. Qiu F, Chen Y, Zhao X (2009) Comparative studies on the self-assembling behaviors of cationic and catanionic surfactant-like peptides. J Colloid Interface Sci 336:477–484

    Article  Google Scholar 

  39. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed Engl 39:1906–1920

    Article  Google Scholar 

  40. Johnsson M, Engberts JBFN (2004) Novel sugar-based gemini surfactants: aggregation properties in aqueous solution. J Phys Org Chem 17:934–944

    Article  Google Scholar 

  41. Kumar V, Chatterjee A, Kumar N, Ganguly A, Chakraborty I, Banerjee M (2014) d-Glucose derived novel gemini surfactants: synthesis and study of their surface properties, interaction with DNA, and cytotoxicity. Carbohydr Res 397:37–45

    Article  Google Scholar 

  42. Kiley P, Zhao X, Vaughn M, Baldo MA, Bruce BD, Zhang S (2005) Self-assembling peptide detergents stabilize isolated photosystem ion a dry surface for an extended time. PLoS Biol 3:e230

    Article  Google Scholar 

  43. Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci USA 103:17707–17712

    Article  Google Scholar 

  44. Gudlur S, Sukthankar P, Gao J, Avila LA, Hiromasa Y, Chen J, Iwamoto T, Tomich JM (2012) Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides. PLoS ONE 7:e45374

    Article  Google Scholar 

  45. van Hell AJ, Costa CICA, Flesch FM, Sutter M, Jiskoot W, Crommelin DJA, Hennink WE, Mastrobattista E (2007) Self-assembly of recombinant amphiphilic oligopeptides into vesicles. Biomacromolecules 8:2753–2761

    Article  Google Scholar 

  46. van Hell AJ, Fretz MM, Crommelin DJ, Hennink WE, Mastrobattista E (2010) Peptide nanocarriers for intracellular delivery of photosensitizers. J Controlled Release Official J Controlled Release Soc 141:347–353

    Article  Google Scholar 

  47. Chen JX, Wang HY, Li C, Han K, Zhang XZ, Zhuo RX (2011) Construction of surfactant-like tetra-tail amphiphilic peptide with RGD ligand for encapsulation of porphyrin for photodynamic therapy. Biomaterials 32:1678–1684

    Article  Google Scholar 

  48. Cui C, Xue YN, Wu M, Zhang Y, Yu P, Liu L, Zhuo RX, Huang SW (2013) Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials 34:3858–3869

    Article  Google Scholar 

  49. Tao Y, Liu R, Chen M, Yang C, Liu X (2012) Cross-linked micelles of graftlike block copolymer bearing biodegradable ε-caprolactone branches: a novel delivery carrier for paclitaxel. J Mater Chem 22:373–380

    Article  Google Scholar 

  50. Kuppusamy P, Afeworki M, Shankar RA, Coffin D, Krishna MC, Hahn SM, Mitchell JB, Zweier JL (1998) In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Can Res 58:1562–1568

    Google Scholar 

  51. Guo XD, Tandiono F, Wiradharma N, Khor D, Tan CG, Khan M, Qian Y, Yang YY (2008) Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector. Biomaterials 29:4838–4846

    Article  Google Scholar 

  52. Wiradharma N, Tong YW, Yang YY (2009) Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials 30:3100–3109

    Article  Google Scholar 

  53. Cardoso AM, Morais CM, Cruz AR, Cardoso AL, Silva SG, do Vale ML, Marques EF, Pedroso de Lima MC, Jurado AS (2015) Gemini surfactants mediate efficient mitochondrial gene delivery and expression. Mol Pharmaceutics 12:716–730

    Google Scholar 

  54. Ahmed T, Kamel AO, Wettig SD (2016) Interactions between DNA and Gemini surfactant: impact on gene therapy: part I. Nanomedicine (London, England) 11:289–306

    Google Scholar 

  55. Qiu F, Chen Y, Cheng J, Wang C, Xu H, Zhao X (2010) A simple method for cell sheet fabrication using mica surfaces grafted with peptide detergent A(6)K. Macromol Biosci 10:881–886

    Article  Google Scholar 

  56. Rajmohan G, Admane P, Anish C, Panda AK (2014) Fusion and self-assembly of biodegradable polymer particles into scaffoldlike and membranelike structures at room temperature for regenerative medicine. Mol Pharm 11:2190–2202

    Article  Google Scholar 

  57. Qiu F, Chen Y, Tang C, Lu Y, Cheng J, Zhao X (2012) Formation of reversed micelle nanoring by a designed surfactant-like peptide. NANO 07:1250024

    Article  Google Scholar 

  58. Gérardin C, Reboul J, Bonne M, Lebeau B (2013) Ecodesign of ordered mesoporous silica materials. Chem Soc Rev 42:4217–4255

    Article  Google Scholar 

  59. Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev 42:4054–4070

    Article  Google Scholar 

  60. Cho H-H, Yang H, Kang DJ, Kim BJ (2015) Surface engineering of graphene quantum dots and their applications as efficient surfactants. ACS Appl Mater Interfaces 7:8615–8621

    Article  Google Scholar 

  61. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  Google Scholar 

  62. Hoppener JW, Ahren B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. New Engl J Med 343:411–419

    Article  Google Scholar 

  63. Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, Ciliberti P, Biagini E, Salvi F, Branzi A (2010) Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol 7:398–408

    Article  Google Scholar 

  64. Zhou Y, Smith DR, Hufnagel DA, Chapman MR (2013) Experimental manipulation of the microbial functional amyloid called curli. Methods Mol Biol (Clifton, N.J.) 966:53–75

    Google Scholar 

  65. Zhou Y, Smith D, Leong BJ, Brannstrom K, Almqvist F, Chapman MR (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287:35092–35103

    Article  Google Scholar 

  66. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science (New York, N.Y.) 295:851–855

    Article  Google Scholar 

  67. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6

    Article  Google Scholar 

  68. Shorter J, Lindquist S (2005) Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6:435–450

    Article  Google Scholar 

  69. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science (New York, N.Y.) 325:328–332

    Article  Google Scholar 

  70. Li C, Adamcik J, Mezzenga R (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nano 7:421–427

    Article  Google Scholar 

  71. Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nano 5:204–207

    Article  Google Scholar 

  72. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  Google Scholar 

  73. Choi B, Yoon G, Lee SW, Eom K (2015) Mechanical deformation mechanisms and properties of amyloid fibrils. Phys Chem Chem Phys 17:1379–1389

    Article  Google Scholar 

  74. Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science (New York, N.Y.) 318:1900–1903

    Article  Google Scholar 

  75. Yoon G, Kwak J, Kim JI, Na S, Eom K (2011) Mechanical characterization of amyloid fibrils using coarse-grained normal mode analysis. Adv Funct Mater 21:3454–3463

    Article  Google Scholar 

  76. Lee G, Lee W, Lee H, Lee CY, Eom K, Kwon T (2015) Self-assembled amyloid fibrils with controllable conformational heterogeneity. Sci Rep 5:16220

    Article  Google Scholar 

  77. Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed Engl 47:4062–4069

    Article  Google Scholar 

  78. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science (New York, N.Y.) 300:625–627

    Article  Google Scholar 

  79. Ryu J, Park CB (2008) High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv Mater 20:3754–3758

    Article  Google Scholar 

  80. Adler-Abramovich L, Gazit E (2008) Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J Pept Sci 14:217–223

    Article  Google Scholar 

  81. Reches M, Gazit E (2005) Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini capped diphenylalanine peptide analogues. Isr J Chem 45:363–371

    Article  Google Scholar 

  82. Reches M, Gazit E (2006) Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Phys Biol 3:S10–S19

    Article  Google Scholar 

  83. Orbach R, Mironi-Harpaz I, Adler-Abramovich L, Mossou E, Mitchell EP, Forsyth VT, Gazit E, Seliktar D (2012) The rheological and structural properties of Fmoc-peptide-based hydrogels: the effect of aromatic molecular architecture on self-assembly and physical characteristics. Langmuir 28:2015–2022

    Article  Google Scholar 

  84. Reches M, Gazit E (2004) Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 4:581–585

    Article  Google Scholar 

  85. Huang R, Wang Y, Qi W, Su R, He Z (2014) Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Res Lett 9:653

    Article  Google Scholar 

  86. Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TP, Gazit E (2014) Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat Commun 5:5219

    Article  Google Scholar 

  87. Adler-Abramovich L, Reches M, Sedman VL, Allen S, Tendler SJ, Gazit E (2006) Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22:1313–1320

    Article  Google Scholar 

  88. Sedman VL, Adler-Abramovich L, Allen S, Gazit E, Tendler SJ (2006) Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J Am Chem Soc 128:6903–6908

    Article  Google Scholar 

  89. Li Q, Ma H, Wang A, Jia Y, Dai L, Li J (2015) Self-assembly of cationic dipeptides forming rectangular microtubes and microrods with optical waveguiding properties. Adv Opt Mater 3:194–198

    Article  Google Scholar 

  90. Yan X, Li J, Möhwald H (2011) Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv Mater 23:2796–2801

    Article  Google Scholar 

  91. Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G (2009) Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett 9:3111–3115

    Article  Google Scholar 

  92. Hauser CAE, Zhang S (2010) Nanotechnology: peptides as biological semiconductors. Nature 468:516–517

    Google Scholar 

  93. Bosne ED, Heredia A, Kopyl S, Karpinsky DV, Pinto AG, Kholkin AL (2013) Piezoelectric resonators based on self-assembled diphenylalanine microtubes. Appl Phys Lett 102:073504

    Article  Google Scholar 

  94. Handelman A, Beker P, Amdursky N, Rosenman G (2012) Physics and engineering of peptide supramolecular nanostructures. Phys Chem Chem Phys 14:6391–6408

    Article  Google Scholar 

  95. Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5:1343–1346

    Article  Google Scholar 

  96. Niu L, Chen X, Allen S, Tendler SJB (2007) Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 23:7443–7446

    Article  Google Scholar 

  97. Even N, Adler-Abramovich L, Buzhansky L, Dodiuk H, Gazit E (2011) Improvement of the mechanical properties of epoxy by peptide nanotube fillers. Small 7:1007–1011

    Article  Google Scholar 

  98. Adler-Abramovich L, Kol N, Yanai I, Barlam D, Shneck RZ, Gazit E, Rousso I (2010) Self-assembled organic nanostructures with metallic-like stiffness. Angew Chem Int Ed 49:9939–9942

    Article  Google Scholar 

  99. Sedman VL, Chen X, Allen S, Roberts CJ, Korolkov VV, Tendler SJB (2013) Tuning the mechanical properties of self-assembled mixed-peptide tubes. J Microsc 249:165–172

    Article  Google Scholar 

  100. Azuri I, Adler-Abramovich L, Gazit E, Hod O, Kronik L (2013) Why Are Diphenylalanine-Based Peptide Nanostructures So Rigid? Insights from first principles calculations. J Am Chem Soc 136:963–969

    Article  Google Scholar 

  101. Yang ZM, Gu HW, Zhang Y, Wang L, Xu B (2004) Small molecule hydrogels based on a class of antiinflammatory agents. Chem Commun 2:208–209

    Article  Google Scholar 

  102. Fleming S, Debnath S, Frederix PW, Tuttle T, Ulijn RV (2013) Aromatic peptide amphiphiles: significance of the Fmoc moiety. Chemical Commun (Cambridge, England) 49:10587–10589

    Google Scholar 

  103. Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114:4407–4415

    Article  Google Scholar 

  104. Ryan DM, Doran TM, Anderson SB, Nilsson BL (2011) Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Langmuir 27:4029–4039

    Article  Google Scholar 

  105. Hughes M, Xu H, Frederix PWJM, Smith AM, Hunt NT, Tuttle T, Kinloch IA, Ulijn RV (2011) Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter 7:10032–10038

    Article  Google Scholar 

  106. Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30:2523–2530

    Article  Google Scholar 

  107. Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18:611–614

    Article  Google Scholar 

  108. Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18:1365–1370

    Article  Google Scholar 

  109. Yan X, Cui Y, He Q, Wang K, Li Junbai (2008) Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots. Chem Mater 20:1522–1526

    Article  Google Scholar 

  110. Xie Y, Zhao J, Huang R, Qi W, Wang Y, Su R, He Z (2016) Calcium-ion-triggered co-assembly of peptide and polysaccharide into a hybrid hydrogel for drug delivery. Nanoscale Res Lett 11:184

    Article  Google Scholar 

  111. Marchesan S, Vargiu AV, Styan KE (2015) The Phe-Phe motif for peptide self-assembly in nanomedicine. Molecules (Basel, Switzerland) 20:19775–19788

    Google Scholar 

  112. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  Google Scholar 

  113. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893

    Article  Google Scholar 

  114. Ben-Nun Y, Fichman G, Adler-Abramovich L, Turk B, Gazit E, Blum G (2016) Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J Controlled Release Official J Controlled Release Soc

    Google Scholar 

  115. Bonetti A, Pellegrino S, Das P, Yuran S, Bucci R, Ferri N, Meneghetti F, Castellano C, Reches M, Gelmi ML (2015) Dipeptide nanotubes containing unnatural fluorine-substituted β2, 3-diarylamino acid and l-alanine as candidates for biomedical applications. Org Lett 17:4468–4471

    Article  Google Scholar 

  116. Nguyen V, Zhu R, Jenkins K, Yang R (2016) Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat Commun 7:13566

    Article  Google Scholar 

  117. Yu YB (2002) Coiled-coils: stability, specificity, and drug delivery potential. Adv Drug Deliv Rev 54:1113–1129

    Article  Google Scholar 

  118. Fletcher NL, Lockett CV, Dexter AF (2011) A pH-responsive coiled-coil peptide hydrogel. Soft Matter 7:10210–10218

    Article  Google Scholar 

  119. Deng Y, Liu J, Zheng Q, Eliezer D, Kallenbach NR, Lu M (2006) Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat. Structure 14:247–255

    Article  Google Scholar 

  120. Apostolovic B, Danial M, Klok H-A (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 39:3541–3575

    Article  Google Scholar 

  121. Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. J Am Chem Soc 127:12423–12428

    Article  Google Scholar 

  122. Kumar P, Pillay V, Modi G, Choonara YE, du Toit LC, Naidoo D (2011) Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Recent Pat Drug Deliv Formul 5:24–51

    Article  Google Scholar 

  123. Xu C, Breedveld V, Kopecek J (2005) Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6:1739–1749

    Article  Google Scholar 

  124. Mehrban N, Abelardo E, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN (2014) Assessing cellular response to functionalized alpha-helical peptide hydrogels. Adv Healthc Mater 3:1387–1391

    Article  Google Scholar 

  125. Bromley EH, Sessions RB, Thomson AR, Woolfson DN (2009) Designed alpha-helical tectons for constructing multicomponent synthetic biological systems. J Am Chem Soc 131:928–930

    Article  Google Scholar 

  126. Pandya MJ, Cerasoli E, Joseph A, Stoneman RG, Waite E, Woolfson DN (2004) Sequence and structural duality: designing peptides to adopt two stable conformations. J Am Chem Soc 126:17016–17024

    Article  Google Scholar 

  127. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600

    Article  Google Scholar 

  128. Mondal S, Adler-Abramovich L, Lampel A, Bram Y, Lipstman S, Gazit E (2015) Formation of functional super-helical assemblies by constrained single heptad repeat. Nat Commun 6:8615

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihi Adler-Abramovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Halperin-Sternfeld, M., Ghosh, M., Adler-Abramovich, L. (2017). Advantages of Self-assembled Supramolecular Polymers Toward Biological Applications. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_2

Download citation

Publish with us

Policies and ethics