Skip to main content

Polyoxometalates and Their Complexes Toward Biological Application

  • Chapter
  • First Online:

Abstract

Polyoxometalates (POMs) are a type of inorganic polyanionic clusters bearing well-defined topologic architecture consisted of transition oxo-metalates. Due to their negatively charged features, various dimensions, acidity, and so forth, POMs also show specific functions in biological system. To understand the activity at molecular level, we start the discussion from the basic binding modes of POMs with biomolecules to the expression of the binding diversity on the crystallography, inhibition and hydrolysis of biomolecules. Moreover, the selective inhibition of POMs for biomolecules displays the potential roles in antitumor, antiviral, and antimicrobial activities. In the chapter, recent achievements concerning the applications of POMs on biological-related systems are summarized. The discussion involves the interaction of POMs with amino acids, peptides, and proteins, the co-crystallization of proteins with the help of POMs, the inhibitory effect of POMs on enzymes and some diseases, the mimetic enzyme functions of POMs for hydrolysis of peptides and proteins, the antiviral, antibacterial, and antitumoral activity of POMs, and their bio-imaging features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang EB, Li YG, Lu Y, Wang XL (2009) Introduction in polyoxometalates. Northeast Normal University Press, Changchun

    Google Scholar 

  2. Poblet JM, López X, Bo C (2003) An initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates. Chem Soc Rev 32(5):297–308

    Article  Google Scholar 

  3. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98(1):307–326

    Article  Google Scholar 

  4. Kaur J, Griffin K, Harrison B, Kozhevnikov IV (2002) Friedel-crafts acylation catalysed by heteropoly acids. J Catal 208(2):448–455

    Article  Google Scholar 

  5. Alsalme AM, Wiper PV, Khimyak YZ, Kozhevnikova EF, Kozhevnikov IV (2010) Solid acid catalysts based on H3PW12O40 heteropoly acid: acid and catalytic properties at a gas-solid interface. J Catal 276(1):181–189

    Article  Google Scholar 

  6. Santos ICMS, Paz FAA, Simões MMQ, Neves MGPMS, Cavaleiro JAS, Klinowski J, Cavaleiro AMV (2008) Catalytic homogeneous oxyfunctionalization with hydrogen peroxide in the presence of a peroxotungstate. Appl Catal A: Gen 351(2):166–173

    Article  Google Scholar 

  7. Lan Y, Wang EB, Song YH, Song YL, Kang ZH, Xu L, Li Z (2006) An effective layer-by-layer adsorption and polymerization method to the fabrication of polyoxometalate-polypyrrole nanoparticle ultrathin films. Polymer 47(4):1480–1485

    Article  Google Scholar 

  8. Aoshima A, Tonomura S, Yamamatsu S (1990) New synthetic route of polyoxytetramethyleneglycol by use of heteropolyacids as catalyst. Polym Adv Technol 1(2):127–132

    Article  Google Scholar 

  9. Murakami H, Kozeki T, Suzuki Y, Ono S, Ohtake H, Sarukura N, Ishikawa E, Yamase T (2001) Nanocluster crystals of lacunary polyoxometalates as structure-design-flexible, inorganic nonlinear materials. Appl Phys Lett 79(22):3564–3566

    Article  Google Scholar 

  10. Yamase T, Ishikawa E, Fukaya K, Nojiri H, Taniguchi T, Atake T (2004) Spin-frustrated (VO) 6+3 -triangle-sandwiching octadecatungstates as a new class of molecular magnets. Inorg Chem 43(25):8150–8157

    Article  Google Scholar 

  11. Liang J, Ma YY, Sun H, Li W, Wu LX (2013) Polyanion cluster patterning on polymer surface through microemulsion approach for selective adsorption of proteins. J Colloid Interface Sci 409:80–87

    Article  Google Scholar 

  12. Sun H, Li HL, Wu LX (2009) Micro-patterned polystyrene surfaces directed by surfactant-encapsulated polyoxometalate complex via breath figures. Polymer 50(9):2113–2122

    Article  Google Scholar 

  13. Berzelius JJ (1826) The preparation of the phosphomolybdate ion [PMo12O40]3−. Pogg Ann 6:369–372

    Google Scholar 

  14. Keggin JF (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc A 144(851):75–100

    Article  Google Scholar 

  15. Zhao JW, Jia HP, Zhang J, Zheng ST, Yang GY (2007) A combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions. Part II: from double cluster, dimer, and tetramer to three-dimensional frameworks. Chem Eur J 13(36):10030–10045

    Article  Google Scholar 

  16. Al-Oweini R, Sartorel A, Bassil BS, Natali M, Berardi S, Scandola F, Kortz U, Bonchio M (2014) Photocatalytic water oxidation by a mixed-valent Mn III3 MnIVO3 manganese oxo core that mimics the natural oxygen-evolving center. Angew Chem Int Ed 53(42):11182–11185

    Article  Google Scholar 

  17. Hungerford G, Hussain F, Patzke GR, Green M (2010) The photophysics of europium and terbium polyoxometalates and their interaction with serum albumin: a time-resolved luminescence study. Phys Chem Chem Phys 12(26):7266–7275

    Article  Google Scholar 

  18. Zheng L, Gu ZJ, Ma Y, Zhang GJ, Yao JN, Keita B, Nadjo L (2010) Molecular interaction between europium decatungstate and histone H1 and its application as a novel biological labeling agent. J Biol Inorg Chem 15(7):1079–1085

    Article  Google Scholar 

  19. Crans DC, Mahroof-Tahir M, Anderson OP, Miller MM (1994) X-ray structure of (NH4)6(Gly-Gly)2V10O28·4H2O: model studies for polyoxometalate-protein interactions. Inorg Chem 33(24):5586–5590

    Article  Google Scholar 

  20. Wang RY, Jia DZ, Zhang L, Liu L, Guo ZP, Li BQ, Wang JX (2006) Rapid synthesis of amino acid polyoxometalate nanotubes by one-step solid-state chemical reaction at room temperature. Adv Funct Mater 16(5):687–692

    Article  Google Scholar 

  21. An HY, Wang EB, Xiao DR, Li YG, Su ZM, Xu L (2006) Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes. Angew Chem Int Ed 45(6):904–908

    Article  Google Scholar 

  22. Crans DC, Holst H, Keramidas AD, Rehder D (1995) A slow exchanging vanadium(V) peptide complex: vanadium(V)-glycine-tyrosine. Inorg Chem 34(10):2524–2534

    Article  Google Scholar 

  23. Sadakane M, Dickman MH, Pope MT (2001) Chiral polyoxotungstates. 1. Stereoselective interaction of amino acids with enantiomers of [CeIII1-P2W17O61)(H2O)x]7−. The structure of DL-[Ce2(H2O)8(P2W17O61)2]14−. Inorg Chem 40(12):2715–2719

    Article  Google Scholar 

  24. Li HW, Wang YZ, Zhang T, Wu YQ, Wu LX (2014) Selective binding of amino acids on europium-substituted polyoxometalates and the interaction-induced luminescent enhancement effect. ChemPlusChem 79(8):1208–1213

    Article  Google Scholar 

  25. Crans DC, Chen H, Anderson OP, Miller MM (1993) Vanadium(V)-protein model studies: solid-state and solution structure. J Am Chem Soc 115(15):6769–6776

    Article  Google Scholar 

  26. Yan XH, Zhu PL, Fei JB, Li JB (2010) Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. Adv Mater 22(11):1283–1287

    Article  Google Scholar 

  27. Zhang T, Li HW, Wu YQ, Wang YZ, Wu LX (2015) Self-assembly of an europium-containing polyoxometalate and the arginine/lysine-rich peptides from human papillomavirus capsid protein L1 in forming luminescence-enhanced hybrid nanoparticles. J Phy Chem C 119(15):8321–8328

    Article  Google Scholar 

  28. Zhang T, Li HW, Wu YQ, Wang YZ, Wu LX (2015) The two-step assemblies of basic-amino-ccid-rich peptide with a highly charged polyoxometalate. Chem Eur J 21(25):9028–9033

    Article  Google Scholar 

  29. Bijelic A, Rompel A (2015) The use of polyoxometalates in protein crystallography—an attempt to widen a well-known bottleneck. Coord Chem Rev 299:22–38

    Article  Google Scholar 

  30. Zhang G, Keita B, Brochon JC, de Oliveira P, Nadjo L, Craescu CT, Miron S (2007) Molecular interaction and energy transfer between human serum albumin and polyoxometalates. J Phy Chem B 111(7):1809–1814

    Article  Google Scholar 

  31. Zhang G, Keita B, Craescu CT, Miron S, de Oliveira P, Nadjo L (2008) Molecular interactions between Wells-Dawson type polyoxometalates and human serum albumin. Biomacromol 9(3):812–817

    Article  Google Scholar 

  32. Zheng L, Ma Y, Zhang G, Yao J, Bassil BS, Kortz U, Keita B, de Oliveira P, Nadjo L, Craescu CT, Miron S (2009) Molecular interaction between a gadolinium-polyoxometalate and human serum albumin. Eur J Inorg Chem 34:5189–5193

    Article  Google Scholar 

  33. Hungerford G, Suhling K, Green M (2008) Luminescence enhancement of a europium containing polyoxometalate on interaction with bovine serum albumin. Photochem Photobiol Sci 7(6):734–737

    Article  Google Scholar 

  34. Stroobants K, Moelants E, Ly HG, Proost P, Bartik K, Parac-Vogt TN (2013) Polyoxometalates as a novel class of artificial proteases: selective hydrolysis of lysozyme under physiological pH and temperature promoted by a cerium(IV) Keggin-type polyoxometalate. Chem Eur J 19(8):2848–2858

    Article  Google Scholar 

  35. Zhang G, Keita B, Craescu CT, Miron S, de Oliveira P, Nadjo L (2007) Polyoxometalate binding to human serum albumin: a thermodynamic and spectroscopic approach. J Phys Chem B 111(38):11253–11259

    Article  Google Scholar 

  36. Schemberg J, Schneider K, Demmer U, Warkentin E, Müller A, Ermler U (2007) Towards biological supramolecular chemistry: a variety of pocket-templated, individual metal oxide cluster nucleations in the cavity of a Mo/W-storage protein. Angew Chem Int Ed 46(14):2408–2413

    Article  Google Scholar 

  37. Kowalewski B, Poppe J, Demmer U, Warkentin E, Dierks T, Ermler U, Schneider K (2012) Nature’s polyoxometalate chemistry: X-ray structure of the Mo storage protein loaded with discrete polynuclear Mo–O clusters. J Am Chem Soc 134(23):9768–9774

    Article  Google Scholar 

  38. Fenske D, Gnida M, Schneider K, Meyer-Klaucke W, Schemberg J, Henschel V, Meyer AK, Knöchel A, Müller A (2005) A new type of metalloprotein: the Mo storage protein from azotobacter vinelandii contains a polynuclear molybdenum-oxide cluster. ChemBioChem 6(2):405–413

    Article  Google Scholar 

  39. Zebisch M, Krauss M, Schafer P, Strater N (2014) Structures of Legionella pneumophila NTPDase1 in complex with polyoxometallates. Acta Cryst D 70(4):1147–1154

    Article  Google Scholar 

  40. Poppe J, Warkentin E, Demmer U, Kowalewski B, Dierks T, Schneider K, Ermler U (2014) Structural diversity of polyoxomolybdate clusters along the three-fold axis of the molybdenum storage protein. J Inorg Biochem 138:122–128

    Article  Google Scholar 

  41. Backvall JE (2011) Modern oxidation methods, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  42. Crans DC, Rithner CD, Theisen LA (1990) Application of time-resolved vanadium-51 2D NMR for quantitation of kinetic exchange pathways between vanadate monomer, dimer, tetramer, and pentamer. J Am Chem Soc 112(8):2901–2908

    Article  Google Scholar 

  43. Kholdeeva OA, Maksimov GM, Maksimovskaya RI, Vanina MP, Trubitsina TA, Naumov DY, Kolesov BA, Antonova NS, Carbo JJ, Poblet JM (2006) ZrIV-monosubstituted Keggin-type dimeric polyoxometalates: synthesis, characterization, catalysis of H2O2-based oxidations, and theoretical study. Inorg Chem 45(18):7224–7234

    Article  Google Scholar 

  44. Ramakrishnan V (2010) Unraveling the structure of the ribosome (Nobel Lecture). Angew Chem Int Ed 49(26):4355–4380

    Article  Google Scholar 

  45. Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A (2014) Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase. Acta Cryst F 70(2):263–266

    Article  Google Scholar 

  46. Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A (2014) Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. Acta Cryst D 70(9):2301–2315

    Article  Google Scholar 

  47. Aureliano M, Crans DC (2009) Decavanadate (V10O28 6−) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem 103(4):536–546

    Article  Google Scholar 

  48. Aureliano M, Fraqueza G, Ohlin CA (2013) Ion pumps as biological targets for decavanadate. Dalton Trans 42(33):11770–11777

    Article  Google Scholar 

  49. Rudenko G, Henry L, Henderson K, Ichtchenko K, Brown MS, Goldstein JL, Deisenhofer J (2002) Structure of the LDL receptor extracellular domain at endosomal pH. Science 298(5602):2353–2358

    Article  Google Scholar 

  50. Davies DR, Hol WG (2004) The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. FEBS Lett 577(3):315–321

    Article  Google Scholar 

  51. Reinelt S, Hofmann E, Gerharz T, Bott M, Madden DR (2003) The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain. J Biol Chem 278(40):39189–39196

    Article  Google Scholar 

  52. Almo SC, Bonanno JB, Sauder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK (2007) Structural genomics of protein phosphatases. J Struct Funct Genomics 8(2–3):121–140

    Article  Google Scholar 

  53. Zebisch M, Krauss M, Schafer P, Lauble P, Strater N (2013) Crystallographic snapshots along the reaction pathway of nucleoside triphosphate diphosphohydrolases. Structure 21(8):1460–1475

    Article  Google Scholar 

  54. Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J (2009) The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell 138(3):514–524

    Article  Google Scholar 

  55. Felts RL, Reilly TJ, Tanner JJ (2006) Structure of francisella tularensis AcpA: prototype of a unique superfamily of acid phosphatases and phospholipases C. J Biol Chem 281(40):30289–30298

    Article  Google Scholar 

  56. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102(5):615–623

    Article  Google Scholar 

  57. Bashan A, Yonath A (2008) The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. J Mol Struct 890(1–3):289–294

    Article  Google Scholar 

  58. Bijelic A, Molitor C, Mauracher SG, Al-Oweini R, Kortz U, Rompel A (2015) Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate. ChemBioChem 16(2):233–241

    Article  Google Scholar 

  59. Evans HR, Holloway DE, Sutton JM, Ayriss J, Shone CC, Acharya KR (2004) C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure. Acta Cryst D 60(8):1502–1505

    Article  Google Scholar 

  60. Ladenstein R, Bacher A, Huber R (1987) Some observations of a correlation between the symmetry of large heavy-atom complexes and their binding sites on proteins. J Mol Biol 195(3):751–753

    Article  Google Scholar 

  61. Müller CE, Iqbal J, Baqi Y, Zimmermann H, Rollich A, Stephan H (2006) Polyoxometalates—a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg Med Chem Lett 16(23):5943–5947

    Article  Google Scholar 

  62. Kraus W, Stephan H, Röllich A, Matéjka Z, Reck G (2005) K6H2[TiW11CoO40]·13H2O, with a monotitanoundecatungstocobaltate(II) anion. Acta Cryst E 61(3):i35–i37

    Article  Google Scholar 

  63. Meißner T, Bergmann R, Oswald J, Rode K, Stephan H, Richter W, Zänker H, Kraus W, Emmerling F, Reck G (2006) Chitosan-encapsulated Keggin Anion [Ti2W10PO40]7−. Synthesis, characterization and cellular uptake studies. Trans Met Chem 31(5):603–610

    Article  Google Scholar 

  64. Boglio C, Micoine K, Derat É, Thouvenot R, Hasenknopf B, Thorimbert S, Lacôte E, Malacria M (2008) Regioselective activation of oxo ligands in functionalized dawson polyoxotungstates. J Am Chem Soc 130(13):4553–4561

    Article  Google Scholar 

  65. Kortz U, Vaissermann J, Thouvenot R, Gouzerh P (2003) Heteropolymolybdates of phosphate, phosphonate, and phosphite functionalized by glycine. Inorg Chem 42(4):1135–1139

    Article  Google Scholar 

  66. Li J, Qi YF, Li J, Wang HF, Wu XY, Duan LY, Wang EB (2004) Heteropolymolybdate–amino acid complexes: synthesis, characterization and biological activity. J Coord Chem 57(15):1309–1319

    Article  Google Scholar 

  67. Micoine K, Hasenknopf B, Thorimbert S, Lacôte E, Malacria M (2007) A general strategy for ligation of organic and biological molecules to Dawson and Keggin polyoxotungstates. Org Lett 9(20):3981–3984

    Article  Google Scholar 

  68. Kurth DG, Lehmann P, Volkmer D, Cölfen H, Koop MJ, Müller A, Du Chesne A (2000) Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a case study. Chem Eur J 6(2):385–393

    Article  Google Scholar 

  69. Volkmer D, Bredenkötter B, Tellenbröker J, Kögerler P, Kurth DG, Lehmann P, Schnablegger H, Schwahn D, Piepenbrink M, Krebs B (2002) Structure and properties of the dendron-encapsulated polyoxometalate (C52H60NO12)12[(Mn(H2O))3(SbW9O33)2], a first generation dendrizyme. J Am Chem Soc 124(35):10489–10496

    Article  Google Scholar 

  70. Volkmer D, Du Chesne A, Kurth DG, Schnablegger H, Lehmann P, Koop MJ, Müller A (2000) Toward nanodevices: synthesis and characterization of the nanoporous surfactant-encapsulated Keplerate (DODA)40(NH4)2[(H2O)n ⊂ Mo132O372(CH3COO)30(H2O)72]. J Am Chem Soc 122(9):1995–1998

    Article  Google Scholar 

  71. Wang XH, Liu JF, Pope MT (2003) New polyoxometalate/starch nanomaterial: synthesis, characterization and antitumoral activity. Dalton Trans 5:957–960

    Google Scholar 

  72. Wang XH, Li F, Liu SX, Pope MT (2005) New liposome-encapsulated-polyoxometalates: synthesis and antitumoral activity. J Inorg Biochem 99(2):452–457

    Article  Google Scholar 

  73. Yang Y, He JH, Wang XH, Li B, Liu JF (2004) Preparation, characterization and in vitro antitumoral activity of a nanosize liposome complex encapsulated polyoxotungstate K6H2[CoW11TiO40]. Transit Met Chem 29(1):96–99

    Article  Google Scholar 

  74. Zhai FY, Li DL, Zhang CL, Wang XH, Li R (2008) Synthesis and characterization of polyoxometalates loaded starch nanocomplex and its antitumoral activity. Eur J Med Chem 43(9):1911–1917

    Article  Google Scholar 

  75. Geisberger G, Paulus S, Gyenge EB, Maake C, Patzke GR (2011) Targeted delivery of polyoxometalate nanocomposites. Small 7(19):2808–2814

    Article  Google Scholar 

  76. Menon D, Thomas RT, Narayanan S, Maya S, Jayakumar R, Hussain F, Lakshmanan VK, Nair SV (2011) A novel chitosan/polyoxometalate nano-complex for anti-cancer applications. Carbohydr Polym 84(3):887–893

    Article  Google Scholar 

  77. Stephan H, Kubeil M, Emmerling F (2013) Müller CE (2013) Polyoxometalates as versatile enzyme inhibitors. Eur J Inorg Chem 10–11:1585–1594

    Article  Google Scholar 

  78. Nakae T, Ishii J, Tokunaga M (1979) Subunit structure of functional porin oligomers that form permeability channels in the outer membrane of escherichia coil. J Biol Chem 254(5):1457–1461

    Google Scholar 

  79. Boyd DW, Kustin K, Niwa M (1985) Do vanadate polyanions inhibit phosphotransferase enzymes? BBA-Protein Strct M 827(3):472–475

    Article  Google Scholar 

  80. Prudent R, Moucadel V, Laudet B, Barette C, Lafanechère L, Hasenknopf B, Li J, Bareyt S, Lacôte E, Thorimbert S, Malacria M, Gouzerh P, Cochet C (2008) Identification of polyoxometalates as nanomolar noncompetitive inhibitors of protein kinase CK2. Chem Biol 15(7):683–692

    Article  Google Scholar 

  81. van Huijsduijnen RH, Sauer WHB, Bombrun A, Swinnen D (2004) Prospects for inhibitors of protein tyrosine phosphatase 1B as antidiabetic drugs. J Med Chem 47(17):4142–4146

    Article  Google Scholar 

  82. Turner TL, Nguyen VH, McLauchlan CC, Dymon Z, Dorsey BM, Hooker JD, Jones MA (2012) Inhibitory effects of decavanadate on several enzymes and leishmania tarentolae in vitro. J Inorg Biochem 108:96–104

    Article  Google Scholar 

  83. Hulley P, Davison A (2003) Regulation of tyrosine phosphorylation cascades by phosphatases: what the actions of vanadium teach us. J Trace Elem Med Bio 16(4):281–290

    Article  Google Scholar 

  84. Yamase T (2005) Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem 15(45):4773–4782

    Article  Google Scholar 

  85. Seko A, Yamase T, Yamashita K (2009) Polyoxometalates as effective inhibitors for sialyl- and sulfotransferases. J Inorg Biochem 103(7):1061–1066

    Article  Google Scholar 

  86. Melani A, Corti F, Stephan H, Müller CE, Donati C, Bruni P, Vannucchi MG, Pedata F (2012) Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Exp Neurol 233(1):193–204

    Article  Google Scholar 

  87. Dong ZX, Tan RK, Cao J, Yang Y, Kong CF, Du J, Zhu S, Zhang Y, Lu J, Huang BQ, Liu SX (2011) Discovery of polyoxometalate-based HDAC inhibitors with profound anticancer activity in vitro and in vivo. Eur J Med Chem 46(6):2477–2484

    Article  Google Scholar 

  88. Iqbal J, Barsukova-Stuckart M, Ibrahim M, Ali SU, Khan AA, Kortz U (2012) Polyoxometalates as potent inhibitors for acetyl and butyrylcholinesterases and as potential drugs for the treatment of Alzheimer’s disease. Med Chem Res 22(3):1224–1228

    Article  Google Scholar 

  89. Judd DA, Nettles JH, Nevins N, Snyder JP, Liotta DC, Tang J, Ermolieff J, Schinazi RF, Hill CL (2001) Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J Am Chem Soc 123(5):886–897

    Article  Google Scholar 

  90. Flutsch A, Schroeder T, Grutter MG, Patzke GR (2011) HIV-1 protease inhibition potential of functionalized polyoxometalates. Bioorg Med Chem Lett 21(4):1162–1166

    Article  Google Scholar 

  91. Messmore JM, Raines RT (2000) Decavanadate inhibits catalysis by ribonuclease A. Arch Biochem Biophys 381(1):25–30

    Article  Google Scholar 

  92. Kosik K (1992) Alzheimer’s disease: a cell biological perspective. Science 256(5058):780–783

    Article  Google Scholar 

  93. Yamin G, Ono K, Inayathullah M, Teplow D (2008) Amyloid β-protein assembly as a therapeutic target of Alzheimers disease. Curr Pharm Design 14(30):3231–3246

    Article  Google Scholar 

  94. Geng J, Li M, Ren JS, Wang EB, Qu XG (2011) Polyoxometalates as inhibitors of the aggregation of amyloid beta peptides associated with Alzheimer’s disease. Angew Chem Int Ed 50(18):4184–4188

    Article  Google Scholar 

  95. Li M, Xu C, Wu L, Ren JS, Wang EB, Qu XG (2013) Self-sssembled peptide-polyoxometalate hybrid nanospheres: two in one enhances targeted inhibition of amyloid β-peptide aggregation associated with Alzheimer’s disease. Small 9(20):3455–3461

    Article  Google Scholar 

  96. Gao N, Sun HJ, Dong K, Ren JS, Duan TC, Xu C, Qu XG (2014) Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat Commun 5:3422

    Google Scholar 

  97. Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544

    Article  Google Scholar 

  98. Zhang M, Mao X, Yu Y, Wang CX, Yang YL, Wang C (2013) Nanomaterials for reducing amyloid cytotoxicity. Adv Mater 25(28):3780–3801

    Article  Google Scholar 

  99. Qing GY, Zhao SL, Xiong YT, Lv ZY, Jiang FL, Liu Y, Chen H, Zhang MX, Sun TL (2014) Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation. J Am Chem Soc 136(30):10736–10742

    Article  Google Scholar 

  100. Faller P, Hureau C, La Penna G (2014) Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-beta to general principles. Acc Chem Res 47(8):2252–2259

    Article  Google Scholar 

  101. Geng J, Li M, Wu L, Ren JS, Qu XG (2012) Liberation of copper from amyloid plaques: making a risk factor useful for Alzheimer’s disease treatment. J Med Chem 55(21):9146–9155

    Article  Google Scholar 

  102. Gao N, Dong K, Zhao AD, Sun HJ, Wang Y, Ren JS, Qu XG (2016) Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res 9(4):1079–1090

    Article  Google Scholar 

  103. Gao N, Sun HJ, Dong K, Ren JS, Qu XG (2015) Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem Eur J 21(2):829–835

    Article  Google Scholar 

  104. Guan YJ, Li M, Dong K, Gao N, Ren JS, Zheng YC, Qu XG (2016) Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-β peptide. Biomaterials 98:92–102

    Article  Google Scholar 

  105. Grant K, Kassai M (2006) Major advances in the hydrolysis of peptides and proteins by metal ions and complexes. Curr Org Chem 10(9):1035–1049

    Article  Google Scholar 

  106. Hlavaty JJ, Benner JS, Hornstra LJ, Schildkraut I (2000) Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage. Biochemistry 39(11):3097–3105

    Article  Google Scholar 

  107. Grodsky NB, Soundar S, Colman RF (2000) Evaluation by site-directed mutagenesis of aspartic ccid residues in the metal site of pig heart NADP-dependent isocitrate dehydrogenase. Biochemistry 39(9):2193–2200

    Article  Google Scholar 

  108. Fournié-Zaluski MC, Soleilhac JM, Turcaud S, Laï-Kuen R, Crine P, Beaumont A, Roques BP (1992) Development of [125I]RB104, a potent inhibitor of neutral endopeptidase 24.11, and its use in detecting nanogram quantities of the enzyme by “inhibitor gel electrophoresis”. Proc Natl Acad Sci USA 89(14):6388–6392

    Google Scholar 

  109. Cheng X, Shaltiel S, Taylor SS (1998) Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting. Biochemistry 37(40):14005–14013

    Article  Google Scholar 

  110. Humphreys DP, King LM, West SM, Chapman AP, Sehdev M, Redden MW, Glover DJ, Smith BJ, Stephens PE (2000) Improved efficiency of site-specific copper(II) ion-catalysed protein cleavage effected by mutagenesis of cleavage site. Protein Eng Des Sel 13(3):201–206

    Article  Google Scholar 

  111. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104(7):2199–2204

    Article  Google Scholar 

  112. Meyer B, Papasotiriou DG, Karas M (2011) 100% Protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids 41(2):291–310

    Article  Google Scholar 

  113. Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9(3):1323–1329

    Article  Google Scholar 

  114. Bakhtiar R, Thomas JJ, Siuzdak G (2000) Mass spectrometry in viral proteomics. Acc Chem Res 33(3):179–187

    Article  Google Scholar 

  115. Suh J, Chei WS (2008) Metal complexes as artificial proteases: toward catalytic drugs. Curr Opin Chem Biol 12(2):207–213

    Article  Google Scholar 

  116. Absillis G, Parac-Vogt TN (2012) Peptide bond hydrolysis catalyzed by the Wells-Dawson Zr(α2-P2W17O61)2 polyoxometalate. Inorg Chem 51(18):9902–9910

    Article  Google Scholar 

  117. Vanhaecht S, Absillis G, Parac-Vogt TN (2013) Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(IV)-substituted Wells-Dawson type polyoxometalate. Dalton Trans 42(43):15437–15446

    Article  Google Scholar 

  118. Ly HGT, Absillis G, Bajpe SR, Martens JA, Parac-Vogt TN (2013) Hydrolysis of dipeptides catalyzed by a airconium(IV)-substituted Lindqvist type polyoxometalate. Eur J Inorg Chem 26:4601–4611

    Article  Google Scholar 

  119. Ly HGT, Absillis G, Parac-Vogt TN (2013) Amide bond hydrolysis in peptides and cyclic peptides catalyzed by a dimeric Zr(IV)-substituted Keggin type polyoxometalate. Dalton Trans 42(30):10929–10938

    Article  Google Scholar 

  120. Ly HGT, Mihaylov T, Absillis G, Pierloot K, Parac-Vogt TN (2015) Reactivity of dimeric tetrazirconium(IV) Wells-Dawson polyoxometalate toward dipeptide hydrolysis studied by a combined experimental and density functional theory approach. Inorg Chem 54(23):11477–11492

    Article  Google Scholar 

  121. Ly HGT, Absillis G, Parac-Vogt TN (2015) Comparative study of the reactivity of zirconium(IV)-substituted polyoxometalates towards the hydrolysis of oligopeptides. Eur J Inorg Chem 13:2206–2215

    Article  Google Scholar 

  122. Stroobants K, Absillis G, Shestakova PS, Willem R, Parac-Vogt TN (2013) Hydrolysis of tetraglycine by a Zr(IV)-substituted Wells-Dawson polyoxotungstate studied by diffusion ordered NMR spectroscopy. J Cluster Sci 25(3):855–866

    Article  Google Scholar 

  123. Sap A, Absillis G, Parac-Vogt TN (2015) Selective hydrolysis of oxidized insulin chain B by a Zr(IV)-substituted Wells-Dawson polyoxometalate. Dalton Trans 44(4):1539–1548

    Article  Google Scholar 

  124. Stroobants K, Absillis G, Moelants E, Proost P, Parac-Vogt TN (2014) Regioselective hydrolysis of human serum albumin by Zr(IV)-substituted polyoxotungstates at the interface of positively charged protein surface patches and negatively charged amino acid residues. Chem Eur J 20(14):3894–3897

    Article  Google Scholar 

  125. Stroobants K, Goovaerts V, Absillis G, Bruylants G, Moelants E, Proost P, Parac-Vogt TN (2014) Molecular origin of the hydrolytic activity and fixed regioselectivity of a Zr(IV)-substituted polyoxotungstate as artificial protease. Chem Eur J 20(31):9567–9577

    Article  Google Scholar 

  126. Ly HGT, Absillis G, Janssens R, Proost P, Parac-Vogt TN (2015) Highly amino acid selective hydrolysis of myoglobin at aspartate residues as promoted by zirconium(IV)-substituted polyoxometalates. Angew Chem Int Ed 54(25):7391–7394

    Article  Google Scholar 

  127. Zhang J, Song YF, Cronin L, Liu TB (2008) Self-assembly of organic-inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J Am Chem Soc 130(44):14408–14409

    Article  Google Scholar 

  128. Fernandez JA, Lopez X, Bo C, de Graaf C, Baerends EJ, Poblet JM (2007) Polyoxometalates with internal cavities: redox activity, basicity, and cation encapsulation in [Xn+P5W30O110](15−n)− Preyssler complexes, with X = Na+, Ca2+, Y3+, La3+, Ce3+, and Th4+. J Am Chem Soc 129(40):12244–12253

    Article  Google Scholar 

  129. Schmitz KS (2009) Macroion clustering in solutions and suspensions: the roles of microions and solvent. J Phy Chem B 113(9):2624–2638

    Article  Google Scholar 

  130. Kong XJ, Long LS, Zheng Z, Huang RB, Zheng LS (2010) Keeping the ball rolling: fullerene-like molecular clusters. Acc Chem Res 43(2):201–209

    Article  Google Scholar 

  131. Lunkenbein T, Kamperman M, Li ZH, Bojer C, Drechsler M, Förster S, Wiesner U, Müller AHE, Breu J (2012) Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. J Am Chem Soc 134(30):12685–12692

    Article  Google Scholar 

  132. Long DL, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36(1):105–121

    Article  Google Scholar 

  133. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old Field with new dimensions in several disciplines. Angew Chem Int Ed Engl 30(1):34–48

    Article  Google Scholar 

  134. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98(1):327–358

    Article  Google Scholar 

  135. Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K, Yamase T (2003) Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antiviral Res 58(3):265–271

    Article  Google Scholar 

  136. Fischer J, Ricard L, Weiss R (1976) The structure of the heteropolytungstate (NH4)17Na[NaW21Sb9O86]·14H2O. An inorganic cryptate. J Am Chem Soc 98(10):3050–3052

    Article  Google Scholar 

  137. Take Y, Tokutake Y, Inouye Y, Yoshida T, Yamamoto A, Yamase T, Nakamura S (1991) Inhibition of proliferation of human immunodeficiency virus type 1 by novel heteropolyoxotungstates in vitro. Antiviral Res 15(2):113–124

    Article  Google Scholar 

  138. Kim GS, Judd DA, Hill CL, Schinazi RF (1994) Synthesis, characterization, and biological activity of a new potent class of anti-HIV agents, the peroxoniobium-substituted heteropolytungstates. J Med Chem 37(6):816–820

    Article  Google Scholar 

  139. Inouye Y, Take Y, Tokutake Y, Yoshida T, Yamamoto A, Yamase T, Nakamura S (1990) Inhibition of replication of human immunodeficiency virus by a heteropolyoxotungstate (PM-19). Chem Pharm Bull 38(1):285–287

    Article  Google Scholar 

  140. Inouye Y, Tokutake Y, Yoshida T, Yamamoto A, Yamase T, Nakamura S (1991) Antiviral activity of polyoxomol ybdoeuropate PM-104 against human immunodeficiency virus type 1. Chem Pharm Bull 39(6):1638–1640

    Article  Google Scholar 

  141. Hill CL, Weeks MS, Schinazi RF (1990) Anti-HIV-1 activity, toxicity, and stability studies of representative structural families of polyoxometalates. J Med Chem 33(10):2767–2772

    Article  Google Scholar 

  142. Ni L, Greenspan P, Gutman R, Kelloes C, Farmer MA, Boudinot FD (1996) Cellular localization of antiviral polyoxometalates in J774 macrophages. Antiviral Res 32(3):141–148

    Article  Google Scholar 

  143. Yamamoto N, Schols D, Clercq ED, Debyser Z, Pauwels R, Balzarini J, Nakashima H, Baba M, Hosoya M, Snoeck R (1992) Mechanism of anti-human immunodeficiency virus action of polyoxometalates, a class of broad-spectrum antiviral agents. Mol Pharmacol 42(6):1109–1117

    Google Scholar 

  144. Wang J, Liu Y, Xu K, Qi YF, Zhong J, Zhang K, Li J, Wang EB, Wu ZY, Kang ZH (2014) Broad-spectrum antiviral property of polyoxometalate localized on a cell surface. ACS Appl Mater Interfaces 6(12):9785–9789

    Article  Google Scholar 

  145. Zhang H, Qi YF, Ding YH, Wang J, Li QM, Zhang JZ, Jiang YF, Chi XM, Li J, Niu JQ (2012) Synthesis, characterization and biological activity of a niobium-substituted-heteropolytungstate on hepatitis B virus. Bioorg Med Chem Lett 22(4):1664–1669

    Article  Google Scholar 

  146. Yamase T, Fukuda N, Tajima Y (1996) Synergistic effect of polyoxotungstates in; combination with β-lactam antibiotics on antibacterial activity against methicillin-resistant staphylococcus aureus. Biol Pharm Bull 19(3):459–465

    Article  Google Scholar 

  147. Fukuda N, Yamase T, Tajima Y (1999) Inhibitory effect of polyoxotungstates on the production of penicillin-binding proteins and β-lactamase against methicillin-resistant staphylococcus aureus. Biol Pharm Bull 22(5):463–470

    Article  Google Scholar 

  148. Inoue M, Suzuki T, Fujita Y, Oda M, Matsumoto N, Yamase T (2006) Enhancement of antibacterial activity of beta-lactam antibiotics by [P2W18O62]6−, [SiMo12O40]4−, and [PTi2W10O40]7− against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. J Inorg Biochem 100(7):1225–1233

    Article  Google Scholar 

  149. Li JF, Chen ZJ, Zhou MC, Jing JB, Li W, Wang Y, Wu LX, Wang LY, Wang YQ, Lee M (2016) Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial cctivity. Angew Chem Int Ed 55(7):2592–2595

    Article  Google Scholar 

  150. Daima HK, Selvakannan PR, Kandjani AE, Shukla R, Bhargava SK, Bansal V (2014) Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6(2):758–765

    Article  Google Scholar 

  151. He JZ, Pang H, Wang WQ, Zhang Y, Yan B, Li XR, Li SJ, Chen J (2013) Uniform M3PMo12O40·nH2O (M = NH4 +, K+, Cs+) rhombic dodecahedral nanocrystals for effective antibacterial agents. Dalton Trans 42(44):15637–15644

    Article  Google Scholar 

  152. Yang FC, Wu KH, Lin WP, Hu MK (2009) Preparation and antibacterial efficacy of bamboo charcoal/polyoxometalate biological protective material. Micropor Mesopor Mat 118(1–3):467–472

    Article  Google Scholar 

  153. Fiorani G, Saoncella O, Kaner P, Altinkaya SA, Figoli A, Bonchio M, Carraro M (2014) Chitosan-polyoxometalate nanocomposites: synthesis, characterization and application as antimicrobial agents. J Cluster Sci 25(3):839–854

    Article  Google Scholar 

  154. Gao SY, Wu ZX, Pan DM, Lin Z, Cao R (2011) Preparation and characterization of polyoxometalate–Ag nanoparticles composite multilayer films. Thin Solid Films 519(7):2317–2322

    Article  Google Scholar 

  155. Wu KH, Yu PY, Yang CC, Wang GP, Chao CM (2009) Preparation and characterization of polyoxometalate-modified poly(vinyl alcohol)/polyethyleneimine hybrids as a chemical and biological self-detoxifying material. Polym Degrad Stab 94(9):1411–1418

    Article  Google Scholar 

  156. Feng YH, Han ZG, Peng J, Lu J, Xue B, Li L, Ma HY, Wang EB (2006) Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan. Mater Lett 60(13–14):1588–1593

    Article  Google Scholar 

  157. Yu X, Chen CY, Peng J, Shi ZY, Shen Y, Mei JL, Ren ZX (2014) Antibacterial-active multilayer films composed of polyoxometalate and methyl violet: fabrication, characterization and properties. Thin Solid Films 571:69–74

    Article  Google Scholar 

  158. Yang P, Lin Z, Bassil BS, Alfaro-Espinoza G, Ullrich MS, Li MX, Silvestru C, Kortz U (2016) Tetra-antimony(III)-bridged 18-tungsto-2-arsenates(V), [(LSbIII)4(A-α-As(V)W9O34)2]10− (L = Ph, OH): turning bioactivity on and off by ligand substitution. Inorg Chem 55(8):3718–3720

    Article  Google Scholar 

  159. Yang P, Bassil BS, Lin Z, Haider A, Alfaro-Espinoza G, Ullrich MS, Silvestru C, Kortz U (2015) Organoantimony(III)-containing tungstoarsenates(III): from controlled assembly to biological activity. Chem Eur J 21(44):15600–15606

    Article  Google Scholar 

  160. Barsukova-Stuckart M, Piedra-Garza LF, Gautam B, Alfaro-Espinoza G, Izarova NV, Banerjee A, Bassil BS, Ullrich MS, Breunig HJ, Silvestru C, Kortz U (2012) Synthesis and biological activity of organoantimony(III)-containing heteropolytungstates. Inorg Chem 51(21):12015–12022

    Article  Google Scholar 

  161. Yang P, Lin Z, Alfaro-Espinoza G, Ullrich MS, Rat CI, Silvestru C, Kortz U (2016) 19-Tungstodiarsenate(III) functionalized by organoantimony(III) groups: tuning the structure-bioactivity relationship. Inorg Chem 55(1):251–258

    Article  Google Scholar 

  162. Yanagie H, Ogata A, Mitsui S, Hisa T, Yamase T, Eriguchi M (2006) Anticancer activity of polyoxomolybdate. Biomed Pharmacother 60(7):349–352

    Article  Google Scholar 

  163. Zhou Z, Zhang DD, Yang L, Ma PT, Si YA, Kortz U, Niu JY, Wang JP (2013) Nona-copper(II)-containing 18-tungsto-8-arsenate(III) exhibits antitumor activity. Chem Commun 49(45):5189–5191

    Article  Google Scholar 

  164. Yang HK, Cheng YX, Su MM, Xiao Y, Hu MB, Wang W, Wang Q (2013) Polyoxometalate-biomolecule conjugates: a new approach to create hybrid drugs for cancer therapeutics. Bioorg Med Chem Lett 23(5):1462–1466

    Article  Google Scholar 

  165. El Moll H, Zhu W, Oldfield E, Rodriguez-Albelo LM, Mialane P, Marrot J, Vila N, Mbomekalle IM, Riviere E, Duboc C, Dolbecq A (2012) Polyoxometalates functionalized by bisphosphonate ligands: synthesis, structural, magnetic, and spectroscopic characterizations and activity on tumor cell lines. Inorg Chem 51(14):7921–7931

    Article  Google Scholar 

  166. Yamase T, Fujita H, Fukushima K (1988) Medical chemistry of polyoxometalates. Part 1. Potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft. Inorg Chim Acta 151(1):15–18

    Google Scholar 

  167. Ogata A, Mitsui S, Yanagie H, Kasano H, Hisa T, Yamase T, Eriguchi M (2005) A novel anti-tumor agent, polyoxomolybdate induces apoptotic cell death in AsPC-1 human pancreatic cancer cells. Biomed Pharmacother 59(5):240–244

    Article  Google Scholar 

  168. Zhang ZM, Duan XP, Yao S, Wang ZS, Lin ZK, Li YG, Long LS, Wang EB, Lin WB (2016) Cation-mediated optical resolution and anticancer activity of chiral polyoxometalates built from entirely achiral building blocks. Chem Sci 7(7):4220–4229

    Article  Google Scholar 

  169. Li H, Jia Y, Wang AH, Cui W, Ma HC, Feng XY, Li JB (2014) Self-assembly of hierarchical nanostructures from dopamine and polyoxometalate for oral drug delivery. Chem Eur J 20(2):499–504

    Article  Google Scholar 

  170. Fu L, Gao HQ, Yan M, Li SZ, Li XY, Dai ZF, Liu SQ (2015) Polyoxometalate-based organic-inorganic hybrids as antitumor drugs. Small 11(24):2938–2945

    Article  Google Scholar 

  171. Sun TD, Cui W, Yan M, Qin G, Guo W, Gu HX, Liu SQ, Wu Q (2016) Target delivery of a novel antitumor organoplatinum(IV)-substituted polyoxometalate complex for safer and more effective colorectal cancer therapy in vivo. Adv Mater 28(34):7397–7404

    Article  Google Scholar 

  172. Na HB, Hyeon T (2009) Nanostructured T1 MRI contrast agents. J Mater Chem 19(35):6267–6273

    Article  Google Scholar 

  173. Accardo A, Tesauro D, Aloj L, Pedone C, Morelli G (2009) Supramolecular aggregates containing lipophilic Gd(III) complexes as contrast agents in MRI. Coord Chem Rev 253(17–18):2193–2213

    Article  Google Scholar 

  174. Feng JH, Li XJ, Pei FK, Sun GY, Zhang X, Liu ML (2002) An evaluation of gadolinium polyoxometalates as possible MRI contrast agent. Magn Reson Imaging 20(5):407–412

    Article  Google Scholar 

  175. Sun GY, Feng JH, Wu HF, Pei FK, Fang K, Lei H (2004) Gadolinium heteropoly complex K17[Gd(P2W17O61)2] as a potential MRI contrast agent. J Magn Magn Mater 281(2–3):405–409

    Article  Google Scholar 

  176. Sun GY, Feng JH, Wu HF, Pei FK, Fang K, Lei H (2004) Investigation of sandwiched gadolinium (III) complexes with tungstosilicates as potential MRI contrast agents. Magn Reson Imaging 22(3):421–426

    Article  Google Scholar 

  177. Li ZF, Li WS, Li XJ, Pei FK, Li YX, Lei H (2007) The gadolinium complexes with polyoxometalates as potential MRI contrast agents. Magn Reson Imaging 25(3):412–417

    Article  Google Scholar 

  178. Wang YL, Zhou SY, Kong DL, Yang HS, Chai WQ, Kortz U, Wu LX (2012) Self-assembly and alterable relaxivity of an organic cation-encapsulated gadolinium-containing polyoxometalate. Dalton Trans 41(33):10052–10059

    Article  Google Scholar 

  179. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35(6):512–523

    Article  Google Scholar 

  180. Chai WQ, Wang S, Zhao H, Liu GF, Fischer K, Li HL, Wu LX, Schmidt M (2013) Hybrid assemblies based on a gadolinium-containing polyoxometalate and a cationic polymer with spermine side chains for enhanced MRI contrast agents. Chem Eur J 19(40):13317–13321

    Article  Google Scholar 

  181. Zhang SM, Zheng YM, Yin SY, Sun JZ, Li B, Wu LX (2017) A dendritic supramolecular complex as uniform hybrid micelle with dual structure for bimodal living imaging. Chem Eur J 23(12):2802–2810

    Article  Google Scholar 

  182. Yong Y, Zhou LJ, Zhang SS, Yan L, Gu ZJ, Zhang GJ, Zhao YL (2016) Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Mater 8(5):e273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, L., Liang, J. (2017). Polyoxometalates and Their Complexes Toward Biological Application. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_13

Download citation

Publish with us

Policies and ethics