Skip to main content

How to Analyze and Present SAS Data for Publication

  • Chapter
  • First Online:
Biological Small Angle Scattering: Techniques, Strategies and Tips

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1009))

Abstract

SAS is a powerful technique to investigate oligomeric state and domain organization of macromolecules, e.g. proteins and nucleic acids, under physiological, functional and even time resolved conditions. However, reconstructing three dimensional structures from SAS data is inherently ambiguous, as no information about orientation and phase is available. In addition experimental artifacts such as radiation damage, concentration effects and incorrect background subtraction can hinder the interpretation of even lead to wrong results. In this chapter, explanations on how to analyze data and how to assess and minimize the influence of experimental artifacts on the data. Furthermore, guidelines on how to present the resulting data and models to demonstrate the data supports the conclusion being made and that it is not biased by artifacts, will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashiotis G, Deschildre A, Nawaz Z, Wright JP, Karkoulis D, Picca FE, Kieffer J (2015) The fast azimuthal integration python library. J Appl Crystallogr 48(Pt 2):510–519. doi:10.1107/S1600576715004306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benecke G, Wagermaier W, Li C, Schwartzkopf M, Flucke G, Hoerth R, Zizak I, Burghammer M, Metwalli E, Muller-Buschbaum P, Trebbin M, Forster S, Paris O, Roth SV, Fratzl P (2014) A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J Appl Crystallogr 47(5):1797–1803. doi:10.1107/S1600576714019773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernado P, Svergun DI (2012) Structural analysis of intrinsically disordered proteins by small-angle x-ray scattering. Mol BioSyst 8(1):151–167. doi:10.1039/c1mb05275f

    Article  CAS  PubMed  Google Scholar 

  • Bonneté F, Finet S, Tardieu A (1999) Second virial coefficient: variations with lysozyme crystallization conditions. J Cryst Growth 196(2–4):403–414. doi:http://dx.doi.org/10.1016/S0022-0248(98)00826-4

    Article  Google Scholar 

  • Brennich ME, Kieffer J, Bonamis G, De Maria AA, Hutin S, Pernot P, Round A (2016) Online data analysis at the ESRF bioSAXS beamline, BM29. J Appl Crystallogr 49:203–212. doi:10.1107/S1600576715024462

    Article  CAS  Google Scholar 

  • Brian Richard P (2013) Everything SAXS: small-angle scattering pattern collection and correction. J Phys Condens Matter 25(38):383201

    Article  Google Scholar 

  • Brookes E, Pérez J, Cardinali B, Profumo A, Vachette P, Rocco M (2013) Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler (US-SOMO) enhanced SAS module. J Appl Crystallogr 46(6):1823–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PC, Hub JS (2015) Interpretation of solution x-ray scattering by explicit-solvent molecular dynamics. Biophys J 108(10):2573–2584. doi:10.1016/j.bpj.2015.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David G, Pérez J (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J Appl Crystallogr 42(5):892–900. doi:10.1107/S0021889809029288

    Article  CAS  Google Scholar 

  • Debye P (1947) Molecular- weight determination by light scattering. J Phys Colloid Chem 51(1):18–32. doi:10.1021/j150451a002

    Article  CAS  PubMed  Google Scholar 

  • Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42(2):342–346. doi:10.1107/S0021889809000338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke D, Kikhney AG, Svergun DI (2012) Automated acquisition and analysis of small angle X-ray scattering data. Nucl Instrum Methods Phys Res Sect A 689:52–59. doi:http://dx.doi.org/10.1016/j.nima.2012.06.008

    Article  CAS  Google Scholar 

  • Franke D, Jeffries CM, Svergun DI (2015) Correlation Map, a goodness-of-fit test for one-dimensional X-ray scattering spectra. Nat Methods 12(5):419–422. doi:10.1038/nmeth.3358

    Article  CAS  PubMed  Google Scholar 

  • Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10(5):415–421

    Article  Google Scholar 

  • Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic, London

    Google Scholar 

  • Graewert MA, Franke D, Jeffries CM, Blanchet CE, Ruskule D, Kuhle K, Flieger A, Schäfer B, Tartsch B, Meijers R, Svergun DI (2015) Automated pipeline for purification, biophysical and x-ray analysis of biomacromolecular solutions. Sci Rep 5:10734. doi:10.1038/srep10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant TD, Luft JR, Wolfley JR, Tsuruta H, Martel A, Montelione GT, Snell EH (2011) Small angle x-ray scattering as a complementary tool for high-throughput structural studies. Biopolymers 95(8):517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinier A (1938) La diffusion des rayons X sous les très faibles angles appliquée à l’étude de fines particules et de suspensions colloïdales. Compte Rendu de l’Académie des Sciences de Paris 206:1374–1376

    CAS  Google Scholar 

  • Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Eur Biophys J EBJ 41(10):789–799. doi:10.1007/s00249-012-0820-x

    Article  CAS  PubMed  Google Scholar 

  • Hammersley A (1997) FIT2D: an introduction and overview. European synchrotron radiation facility internal report ESRF97HA02T 68

    Google Scholar 

  • Hosemann R (1939) Neues röntgenographisches Verfahren zur Bestimmung des submikroskopischen Feinbaues eines Stoffes. Diskussion des Zellulosemodells. Z Phys 114(3–4):133–169

    Article  CAS  Google Scholar 

  • Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology – expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657. doi:10.1002/pro.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques DA, Guss JM, Svergun DI, Trewhella J (2012) Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Crystallogr D Biol Crystallogr 68(6):620–626

    Article  CAS  PubMed  Google Scholar 

  • Karlsen ML, Thorsen TS, Johner N, Ammendrup-Johnsen I, Erlendsson S, Tian X, Simonsen JB, Hoiberg-Nielsen R, Christensen NM, Khelashvili G, Streicher W, Teilum K, Vestergaard B, Weinstein H, Gether U, Arleth L, Madsen KL (2015) Structure of dimeric and tetrameric complexes of the BAR domain protein PICK1 determined by small-angle X-ray scattering. Structure 23(7):1258–1270. doi:10.1016/j.str.2015.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CJ, Hub JS (2015) WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics. Nucleic Acids Res 43(W1):W225–W230. doi:10.1093/nar/gkv309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsioubas A, Perez J (2013) Incorporation of a hydration layer in the ‘dummy atom’ ab initio structural modelling of biological macromolecules. J Appl Crystallogr 46(6):1884–1888. doi:10.1107/S0021889813025387

    Article  CAS  Google Scholar 

  • Lambright D, Malaby AW, Kathuria SV, Nobrega RP, Bilsel O, Matthews CR, Muthurajan U, Luger K, Chopra R, Irving TC (2013) Complementary techniques enhance the quality and scope of information obtained from SAXS. ACA Trans:1–12

    Google Scholar 

  • Mathew E, Mirza A, Menhart N (2004) Liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins. J Synchrotron Radiat 11(4):314–318. doi:10.1107/S0909049504014086

    Article  CAS  PubMed  Google Scholar 

  • Mylonas E, Svergun DI (2007) Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J Appl Crystallogr 40(s1):s245–s249. doi:10.1107/S002188980700252X

    Article  CAS  Google Scholar 

  • Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Crystallogr 33(2):218–225. doi:10.1107/S0021889899015216

    Article  CAS  Google Scholar 

  • Pernot P, Round A, Barrett R, De Maria AA, Gobbo A, Gordon E, Huet J, Kieffer J, Lentini M, Mattenet M (2013) Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution. J Synchrotron Radiat 20(4):660–664. doi:10.1107/S0909049513010431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petoukhov MV, Svergun DI Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89(2):1237–1250. doi:10.1529/biophysj.105.064154

  • Petoukhov MV, Konarev PV, Kikhney AG, Svergun DI (2007) ATSAS 2.1-towards automated and web-supported small-angle scattering data analysis. Applied crystallography

    Google Scholar 

  • Porod G (1982) General theory. In: Glatter O, Kratky O (eds) Small angle X-ray scattering. Academic, London

    Google Scholar 

  • Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95(8):559–571. doi:10.1002/bip.21638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496(7446):477–481. doi:10.1038/nature12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes FE, Schwartz CR, Tainer JA, Rambo RP (2014) Methods for using new conceptual tools and parameters to assess RNA structure by small-angle X-ray scattering. Methods Enzymol 549:235–263. doi:10.1016/B978-0-12-801122-5.00011-8

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro A (2006) XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J Appl Crystallogr 39(6):905–909. doi:10.1107/S0021889806042488

  • Round A, Brown E, Marcellin R, Kapp U, Westfall CS, Jez JM, Zubieta C (2013) Determination of the GH3. 12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallogr D Biol Crystallogr 69(10):2072–2080. doi:10.1107/S0907444913019276

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38(suppl 2):W540–W544. doi:10.1093/nar/gkq461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segel DJ, Bachmann A, Hofrichter J, Hodgson KO, Doniach S, Kiefhaber T (1999) Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J Mol Biol 288(3):489–499

    Article  CAS  PubMed  Google Scholar 

  • Semenyuk AV, Svergun DI (1991) GNOM – a program package for small-angle scattering data processing. J Appl Crystallogr 24(5):537–540. doi:10.1107/S002188989100081X

    Article  Google Scholar 

  • Svergun D (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25(4):495–503

    Article  CAS  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886. doi:10.1016/S0006-3495(99)77443-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svergun D, Barberato C, Koch M (1995) CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773

    Article  CAS  Google Scholar 

  • Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80(6):2946–2953. doi:10.1016/S0006-3495(01)76260-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Inoko Y (2009) Size-exclusion chromatography combined with small-angle X-ray scattering optics. J Chromatogr A 1216(44):7461–7465. doi:10.1016/j.chroma.2009.02.053

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang L, Kao YT, Qiu W, Yang Y, Okobiah O, Zhong D (2007) Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci U S A 104(47):18461–18466. doi:10.1073/pnas.0707647104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Bárbara Calisto Machado for providing the SAXS data of the K and G proteins and KG complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Brennich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brennich, M., Pernot, P., Round, A. (2017). How to Analyze and Present SAS Data for Publication. In: Chaudhuri, B., Muñoz, I., Qian, S., Urban, V. (eds) Biological Small Angle Scattering: Techniques, Strategies and Tips. Advances in Experimental Medicine and Biology, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-10-6038-0_4

Download citation

Publish with us

Policies and ethics