Skip to main content

Magnetic Actuated Catheterization Robotics

  • Chapter
  • First Online:
Electromagnetic Actuation and Sensing in Medical Robotics

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

This chapter covers the design principles of magnetic actuated catheter robot and is outlined as follows. Section 1 discusses key fundamental principles to design for an electromagnetic catheter/guide wire type surgical robot. The clinical perspectives are covered in Sect. 1.1 and in Sect. 1.2 the overarching electromagnetic theory is mentioned. Electromagnetic systems can be further decomposed into the stators (stationary wound coils) and actuators (moving part usually consists of permanent magnet), where the stators can be interpreted as the input and the actuator the output. Section 2 will cover the design consideration of stators and Sect. 4 the design principles of the actuators. Sections 2 and 3, aim to provide the reader with an intuitive approach to designing their own electromagnetic system. Section 3 will further exemplify principles covered in Sects. 2 and 3 with a fabricated prototype from our lab. These electromagnetic catheter systems can be classified by many parameters; one important parameter is the bending angle and will be addressed in Sect. 4. The use of this angle is demonstrated for a surgical context. This chapter concludes in Sect. 8, providing an overview of the works presented and the future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aalami, Oliver, et al. 2015. Prevention of Juxta-Anastomotic AV Fistula Stenosis With Implantation of an ePTFE Covered Endograft at Time of AV Fistula Creation. Journal of Vascular Surgery 61 (6): 101–102S.

    Google Scholar 

  2. J.J. Abbott et al. 2007. Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies. In IEEE Transactions on Robotics 23.6, pp. 1247–1252. ISSN: 1552-3098. https://doi.org/10.1109/TRO.2007.910775.

  3. Abbott, Jake J., et al. 2009. How Should Microrobots Swim? English. The International Journal of Robotics Research 28 (11–12): 1434–1447.

    Article  Google Scholar 

  4. Afshin Anssari-Benam, Dan L. Bader, and Hazel R. C. Screen. 2011. A combined experimental and modelling approach to aortic valve viscoelasticity intensile deformation. Journal of Materials Science: Materials in Medicine 22.2, pp. 253–262.

    Google Scholar 

  5. Assadsangabi, Babak, et al. 2016. Catheter-based microrotary motor enabled by Ferrofluid for microendoscope applications. Journal of Microelectromechanical Systems 25 (3): 542–548.

    Google Scholar 

  6. Bauernfeind, Tamas, et al. 2011. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace 13 (7): 1015–1021.

    Google Scholar 

  7. Bouchebout, Soukeyna, et al. 2012. An overview of multiple DoF magnetic actuated micro-robots. Journal of Micro-Nano Mechatronics 7 (4): 97–113.

    Google Scholar 

  8. Jason Bradfield et al. 2012. Catheter ablation utilizing remote magnetic navigation: a review of applications and outcomes. Pacing and Clinical Electrophysiology 35 (8): 1021–1034.

    Google Scholar 

  9. William D.F Christopher P.S. 2010. U.S. Patent No.2012,0,089,089. en. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  10. Julian K. Chun et al. 2007. Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. European Heart Journal 28.2, pp. 190–195.

    Google Scholar 

  11. Dember, Laura M., et al. 2005. Design of the dialysis access consortium (DAC) clopidogrel prevention of early AV fistula thrombosis trial. Clinical Trials 2 (5): 413–422.

    Google Scholar 

  12. Ernst, Sabine, et al. 2004. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109 (12): 1472–1475.

    Google Scholar 

  13. Faddis, Mitchell N., and Bruce D. Lindsay. 2003. Magnetic catheter manipulation. Coronary Artery Disease 14 (1): 25–27.

    Google Scholar 

  14. F.G.R. Fowkes et al. 2013. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet (London, England) 382.9901, pp. 1329–1340.

    Google Scholar 

  15. Anna Franzone et al. 2012. The role of atherectomy in the treatment of lower extremity peripheral artery disease. BMC surgery 12 Suppl 1. Suppl 1, S13–S13.

    Google Scholar 

  16. Haghjoo, Majid, et al. 2009. Initial clinical experience with the new irrigated tip magnetic catheter for ablation of scar-related sustained ventricular tachycardia: a small case series. Journal of Cardiovascular Electrophysiology 20 (8): 935–939.

    Google Scholar 

  17. Hod, Tammy, et al. 2014. Factors predicting failure of AV fistula first policy in the elderly: predictors of AVF failure. Hemodialysis International 18 (2): 507–515.

    Google Scholar 

  18. Walter H. Hörl et al. 2004. Replacement of renal function by dialysis. Fifth / by Walter H. Hörl, Karl M. Koch, Robert M. Lindsay, Claudio Ronco, James F. Winchester (-in-chief).;1; 5th; Dordrecht: Springer Science+Business Media. ISBN: 9781402022753; 1402022751;9789401570121; 9401570124.

    Google Scholar 

  19. Iacovacci, Veronica, et al. 2015. Untethered magnetic millirobot for targeted drug delivery. Biomedical Microdevices 17 (3): 1–12.

    Google Scholar 

  20. Ahmed A. Al-Jaishi et al. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 63.3 (2014;2013), p. 464.

    Google Scholar 

  21. Jeon, S.M., and G.H. Jang. 2012. Precise steering and unclogging motions of a catheter with a rotary magnetic drill tip actuated by a magnetic navigation system. IEEE Transactions on Magnetics 48 (11): 4062–4065.

    Google Scholar 

  22. Jeon, Seungmun, et al. 2010. Magnetic navigation system with gradient and uniform saddle coils for the wireless manipulation of micro-robots in human blood vessels. IEEE Transactions on Magnetics 46 (6): 1943–1946.

    Google Scholar 

  23. Jeong, Semi, et al. 2011. Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field. Sensors and Actuators A: Physical 171 (2): 429.

    Google Scholar 

  24. K. Konner. 2003. Vascular access in the hemodialysis patient personal experience and review of the literature. en. In Hemodialysis International 7.2, pp. 184–190. https://doi.org/10.1046/j.1492-7535.2003.00026.x.

  25. Lanzer, P. 2013. Catheter-Based Cardiovascular Interventions: A Knowledge-based Approach. New York: Springer.

    Book  Google Scholar 

  26. P. Lanzer and Inc Ovid Technologies. Mastering endovascular techniques: a guide to excellence. Philadelphia: Lippincott Williams & Wilkins, 2007; 2006; ISBN: 9781582559674; 1582559678.

    Google Scholar 

  27. Wonseo Lee et al. 2017. Selective motion control of a crawling magnetic robot system for wireless self-expandable stent delivery in narrowed tubular environments. IEEE Transactions on Industrial Electronics 64.2, pp. 1636–1644.

    Google Scholar 

  28. Lim, Gregory B. 2013. Peripheral artery disease pandemic. Nature Reviews Cardiology 10 (10): 552.

    Google Scholar 

  29. Jianhua Liu et al. 2016. Design and fabrication of a catheter magnetic navigation system for cardiac arrhythmias. IEEE Transactions on Applied Superconductivity 26.4, pp. 1–4.

    Google Scholar 

  30. X. Liu, G.J. Mancini, and J. Tan. 2015. Design and Analysis of a Magnetic Actuated Capsule Camera Robot for Single Incision Laparoscopic Surgery. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 229–235. https://doi.org/10.1109/IROS.2015.7353379.

  31. Arthur W. Mahoney and Jake J. Abbott. 2016. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. The International Journal of Robotics Research 35.1-3, 129–147.

    Google Scholar 

  32. Hamal Marino, Christos Bergeles, and Bradley J. Nelson. 2014. Robust electromagnetic control of microrobots under force and localization uncertainties. IEEE Transactions on Automation Science and Engineering 11.1, 310–316.

    Google Scholar 

  33. Misakian, M. 2000. Equations for the magnetic field produced by one or more rectangular loops of wire in the same plane. Journal of research of the National Institute of Standards and Technology 105 (4): 557.

    Google Scholar 

  34. Mukherjee, Debabrata, et al. 2010. Cardiovascular Catheterization and Intervention: A Textbook of Coronary, Peripheral, and Structural Heart Disease. Baton Rouge: CRC Press.

    Book  Google Scholar 

  35. J.M.S. Pearce. 2009. Henry gray’s anatomy. In Clinical Anatomy 22.3, pp. 291–295. issn: 1098-2353. https://doi.org/10.1002/ca.20775.

  36. A. J. Petruska et al. 2016. Magnetic needle guidance for neurosurgery: Initial design and proof of concept. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4392–4397. https://doi.org/10.1109/ICRA.2016.7487638.

  37. Peter Schneider. Endovascular skills : guidewire and catheter skills for endovascular surgery. 3rd ed. CRC Press, 2009;2008; ISBN: 1420069373; 9781420069372.

    Google Scholar 

  38. J.C. Sell. 2007. U.S. Patent No. 2007,0,032,746. Washington, DC.

    Google Scholar 

  39. J.C. Sell. 2005. U.S. Patent No. 8,419,681. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  40. S. Song, H. Yu, and H. Ren. 2015. Study on mathematic magnetic field model of rectangular coils for magnetic actuation. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 19–24. https://doi.org/10.1109/CCECE.2015.7129153.

  41. Studies from Swiss Federal Institute of Technology Have Provided New Information about Nanoparticles. In Nanotechnology Weekly (2012), p. 352.

    Google Scholar 

  42. Subramaniam, Tavintharan, et al. 2011. Distribution of ankle-brachial index and the risk factors of peripheral artery disease in a multi-ethnic Asian population. Vascular Medicine 16 (2): 87–95.

    Google Scholar 

  43. Tamas Szili-torok et al. 2012. Catheter ablation of ventricular tachycardias using remote magnetic navigation: a consecutive case-control study. Journal of Cardiovascular Electrophysiology 23 (9): 948–954.

    Google Scholar 

  44. Libo Tang, Yonghua Chen, and Xuejian He. 2007. Magnetic force aided compliant needle navigation and needle performance analysis. IEEE, pp. 612–616. ISBN: 1424417619; 9781424417612; 9781424417582; 1424417589.

    Google Scholar 

  45. TDK Europe – EPCOS - Material Data Sheets.

    Google Scholar 

  46. A.S. Thornton et al. 2006. Magnetic navigation in AV nodal re-entrant tachycardia study: early results of ablation with one- and three-magnet catheters. In Europace : European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology 8.4, pp. 225–230.

    Google Scholar 

  47. I. Tunay. 2004. Modeling magnetic catheters in external fields, vol. 1. IEEE, pp. 2006–2009. ISBN: 9780780384392; 0780384393.

    Google Scholar 

  48. I. Tunay. 2004. Position control of catheters using magnetic fields. In IEEE, pp. 392–397. ISBN: 0780385993; 9780780385993;

    Google Scholar 

  49. J.C Viswanathan R.R. and Sell. 2006. U.S. Patent No.8,348,858. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  50. Watanabe, Seitaro, et al. 2013. Positioning of nasobiliary tube using magnetloaded catheters. Endoscopy 45 (10): 835–837.

    Google Scholar 

  51. J.E. White et al. 2012. Development of a lorentz-force actuated intravitreal jet injector. In IEEE, pp. 984–987. ISBN: 1557-170X.

    Google Scholar 

  52. Mark, A. Wood, et al. 2008. Remote magnetic versus manual catheter navigation for ablation of supraventricular tachycardias: a randomized, multicenter trial. Pacing and Clinical Electrophysiology 31 (10): 1313–1321.

    Google Scholar 

  53. Wu, Cong C., et al. 2015. The outcome of the proximal radial artery arteriovenous fistula. Journal of Vascular Surgery 61 (3): 802–808.

    Google Scholar 

  54. Steven Wu and Sanjeeva P. Kalva. 2015. Dialysis Access Management. Cham: Springer International Publishing. ISBN: 3319090933; 9783319090931; 9783319090924; 3319090925.

    Google Scholar 

  55. Zhou, H., J. Sun, B.S. Yeow, H. Ren 2016. Multi-objective parameter optimization design of a magnetically actuated intravitreal injection device. In IEEE 14th International Workshop on Advanced Motion Control (AMC). Auckland, New: Zealand 2016: 430–435. https://doi.org/10.1109/AMC.2016.7496388.

Download references

Acknowledgements

This work is supported by the Singapore Academic Research Fund under Grant R-397-000-173-133, NUSRI China Jiangsu Provincial Grant BK20150386 & BE2016077 awarded to Dr. Hongliang Ren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Hongliang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeow, B.S., Hongliang, R. (2018). Magnetic Actuated Catheterization Robotics. In: Ren, H., Sun, J. (eds) Electromagnetic Actuation and Sensing in Medical Robotics. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6035-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6035-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6034-2

  • Online ISBN: 978-981-10-6035-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics