Skip to main content

Inflammasomes in the Gut Mucosal Homeostasis

  • Chapter
  • First Online:
Book cover Regulation of Inflammatory Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1024))

Abstract

Inflammasomes are critical checkpoints in inflammation. The activation of inflammasome can cause a series of inflammatory responses including maturation of interleukin (IL)-1β and IL-18 and a specialized form of cell death called pyroptosis. Since its identification in the early 2000s, inflammasomes have been implicated to play multifaceted roles in varied pathological and physiological conditions, especially in the mucosal compartments including the gut. Maintaining gut mucosal homeostasis has always been a remarkable challenge for the host due to both the vast mucosal surface that is exposed to the outside and the enormous amount of local microbiota. To accomplish this challenge, the host mounts a constant dynamic low-grade inflammatory response (physiological inflammation) in coping with insults of microbes in the intestine. This book chapter aims to summarize the current knowledge of how inflammasomes contribute to gut mucosal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420

    Article  PubMed  CAS  Google Scholar 

  3. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  PubMed  CAS  Google Scholar 

  4. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192

    Article  PubMed  CAS  Google Scholar 

  5. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249

    Article  PubMed  CAS  Google Scholar 

  6. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241

    Article  PubMed  CAS  Google Scholar 

  8. Lyte M, Cryan JF (2014) Microbial endocrinology. the microbiota-gut-brain axis in health and disease. Springer, New York

    Book  Google Scholar 

  9. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  PubMed  CAS  Google Scholar 

  10. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  PubMed  CAS  Google Scholar 

  13. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169

    Article  PubMed  CAS  Google Scholar 

  14. Lissner D, Siegmund B (2011) The multifaceted role of the inflammasome in inflammatory bowel diseases. Sci World J 11:1536–1547

    Article  CAS  Google Scholar 

  15. Dinarello CA (2010) IL-1: discoveries, controversies and future directions. Eur J Immunol 40:599–606

    Article  PubMed  CAS  Google Scholar 

  16. Dinarello CA, Renfer L, Wolff SM (1977) Human leukocytic pyrogen: purification and development of a radioimmunoassay. Proc Natl Acad Sci U S A 74:4624–4627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP (1989) A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem 264:5323–5326

    PubMed  CAS  Google Scholar 

  18. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774

    Article  PubMed  CAS  Google Scholar 

  19. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100

    Article  PubMed  CAS  Google Scholar 

  20. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K et al (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88–91

    Article  PubMed  CAS  Google Scholar 

  21. Bazan JF, Timans JC, Kastelein RA (1996) A newly defined interleukin-1? Nature 379:591

    Article  PubMed  CAS  Google Scholar 

  22. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9:113–114

    Article  PubMed  CAS  Google Scholar 

  23. Cominelli F, Pizarro TT (1996) Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease. Aliment Pharmacol Ther 10:49–53

    Article  PubMed  CAS  Google Scholar 

  24. Cominelli F, Nast CC, Duchini A, Lee M (1992) Recombinant interleukin-1 receptor antagonist blocks the proinflammatory activity of endogenous interleukin-1 in rabbit immune colitis. Gastroenterol 103:65–71

    Article  CAS  Google Scholar 

  25. Ferretti M, Casini-Raggi V, Pizarro TT, Eisenberg SP, Nast CC, Cominelli F (1994) Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs inflammation in rabbit immune colitis. J Clin Invest 94:449–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cominelli F, Nast CC, Llerena R, Dinarello CA, Zipser RD (1990) Interleukin 1 suppresses inflammation in rabbit colitis Mediation by endogenous prostaglandins. J Clin Invest 85:582–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fan H, Zhao G, Liu L, Liu F, Gong W, Liu X, Yang L, Wang J, Hou Y (2012) Pre-treatment with IL-1beta enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 9:473–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bersudsky M, Luski L, Fishman D, White RM, Ziv-Sokolovskaya N, Dotan S, Rider P, Kaplanov I, Aychek T, Dinarello CA, Apte RN, Voronov E (2014) Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut 63:598–609

    Article  PubMed  CAS  Google Scholar 

  29. Seo SU, Kamada N, Munoz-Planillo R, Kim YG, Kim D, Koizumi Y, Hasegawa M, Himpsl SD, Browne HP, Lawley TD, Mobley HL, Inohara N, Nunez G (2015) Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42:744–755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Alipour M, Lou Y, Zimmerman D, Bording-Jorgensen MW, Sergi C, Liu JJ, Wine E (2013) A balanced IL-1beta activity is required for host response to Citrobacter rodentium infection. PLoS One 8:e80656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hasegawa M, Kamada N, Jiao Y, Liu MZ, Nunez G, Inohara N (2012) Protective role of commensals against Clostridium difficile infection via an IL-1beta-mediated positive-feedback loop. J Immunol 189:3085–3091

    Article  PubMed  CAS  Google Scholar 

  32. Lebeis SL, Powell KR, Merlin D, Sherman MA, Kalman D (2009) Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 77:604–614

    Article  PubMed  CAS  Google Scholar 

  33. Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F, Maloy KJ (2012) IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med 209:1595–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li B, Gurung P, Malireddi RK, Vogel P, Kanneganti TD, Geiger TL (2015) IL-10 engages macrophages to shift Th17 cytokine dependency and pathogenicity during T-cell-mediated colitis. Nat Commun 6:6131

    Article  PubMed  CAS  Google Scholar 

  35. Carvalho FA, Nalbantoglu I, Ortega-Fernandez S, Aitken JD, Su Y, Koren O, Walters WA, Knight R, Ley RE, Vijay-Kumar M, Gewirtz AT (2012) Interleukin-1beta (IL-1beta) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis. Gut 61:373–384

    Article  PubMed  CAS  Google Scholar 

  36. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343:1249288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hu S, Peng L, Kwak YT, Tekippe EM, Pasare C, Malter JS, Hooper LV, Zaki MH (2015) The DNA sensor AIM2 maintains intestinal homeostasis via regulation of epithelial antimicrobial host defense. Cell Rep 13:1922–1936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee Y, Kumagai Y, Jang MS, Kim JH, Yang BG, Lee EJ, Kim YM, Akira S, Jang MH (2013) Intestinal Lin- c-Kit+ NKp46− CD4− population strongly produces IL-22 upon IL-1beta stimulation. J Immunol 190:5296–5305

    Article  PubMed  CAS  Google Scholar 

  39. Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH, Chaplin DD, Lee EH, Jang MH, Woo SY, Seoh JY, Miyasaka M, Rothenberg ME (2015) IL-1beta in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 8:930–942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Monteleone G, Trapasso F, Parrello T, Biancone L, Stella A, Iuliano R, Luzza F, Fusco A, Pallone F (1999) Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol 163:143–147

    PubMed  CAS  Google Scholar 

  41. Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr, Foley E, Moskaluk CA, Bickston SJ, Cominelli F (1999) IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol 162:6829–6835

    PubMed  CAS  Google Scholar 

  42. Schmidt C, Giese T, Goebel R, Schilling M, Marth T, Ruether A, Schreiber S, Zeuzem S, Meuer SC, Stallmach A (2007) Interleukin-18 is increased only in a minority of patients with active Crohn’s disease. Int J Color Dis 22:1013–1020

    Article  CAS  Google Scholar 

  43. Wang Y, Tong J, Chang B, Wang BF, Zhang D, Wang BY (2014) Genetic polymorphisms in the IL-18 gene and ulcerative colitis risk: a meta-analysis. DNA Cell Biol 33:438–447

    Article  PubMed  CAS  Google Scholar 

  44. Aizawa Y, Sutoh S, Matsuoka M, Negishi M, Torii A, Miyakawa Y, Sugisaka H, Nakamura M, Toda G (2005) Association of interleukin-18 gene single-nucleotide polymorphisms with susceptibility to inflammatory bowel disease. Tissue Antigens 65:88–92

    Article  PubMed  CAS  Google Scholar 

  45. Tamura K, Fukuda Y, Sashio H, Takeda N, Bamba H, Kosaka T, Fukui S, Sawada K, Tamura K, Satomi M, Yamada T, Yamamura T, Yamamoto Y, Furuyama J, Okamura H, Shimoyama T (2002) IL18 polymorphism is associated with an increased risk of Crohn’s disease. J Gastroenterol 37(Suppl 14):111–116

    Article  PubMed  CAS  Google Scholar 

  46. Haas SL, Andreas Koch W, Schreiber S, Reinhard I, Koyama N, Singer MV, Bocker U (2005) 137 (G/C) IL-18 promoter polymorphism in patients with inflammatory bowel disease. Scand J Gastroenterol 40:1438–1443

    Article  PubMed  Google Scholar 

  47. Takagawa T, Tamura K, Takeda N, Tomita T, Ohda Y, Fukunaga K, Hida N, Ohnishi K, Hori K, Kosaka T, Fukuda Y, Ikeuchi H, Yamamura T, Miwa H, Matsumoto T (2005) Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population. Inflamm Bowel Dis 11:1038–1043

    Article  PubMed  CAS  Google Scholar 

  48. Glas J, Torok HP, Tonenchi L, Kapser J, Schiemann U, Muller-Myhsok B, Folwaczny M, Folwaczny C (2005) Association of polymorphisms in the interleukin-18 gene in patients with Crohn’s disease depending on the CARD15/NOD2 genotype. Inflamm Bowel Dis 11:1031–1037

    Article  PubMed  Google Scholar 

  49. Ten Hove T, Corbaz A, Amitai H, Aloni S, Belzer I, Graber P, Drillenburg P, van Deventer SJ, Chvatchko Y, Te Velde AA (2001) Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-alpha production in mice. Gastroenterol 121:1372–1379

    Article  CAS  Google Scholar 

  50. Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr HA, Hartmann G, Dinarello CA, Endres S, Eigler A (2001) Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am J Physiol Regul Integr Comp Physiol 281:R1264–R1273

    Article  PubMed  CAS  Google Scholar 

  51. Sivakumar PV, Westrich GM, Kanaly S, Garka K, Born TL, Derry JM, Viney JL (2002) Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut 50:812–820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kanai T, Watanabe M, Okazawa A, Sato T, Yamazaki M, Okamoto S, Ishii H, Totsuka T, Iiyama R, Okamoto R, Ikeda M, Kurimoto M, Takeda K, Akira S, Hibi T (2001) Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn’s disease. Gastroenterol 121:875–888

    Article  CAS  Google Scholar 

  53. Ishikura T, Kanai T, Uraushihara K, Iiyama R, Makita S, Totsuka T, Yamazaki M, Sawada T, Nakamura T, Miyata T, Kitahora T, Hibi T, Hoshino T, Watanabe M (2003) Interleukin-18 overproduction exacerbates the development of colitis with markedly infiltrated macrophages in interleukin-18 transgenic mice. J Gastroenterol Hepatol 18:960–969

    Article  PubMed  CAS  Google Scholar 

  54. Wirtz S, Becker C, Blumberg R, Galle PR, Neurath MF (2002) Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA. J Immunol 168:411–420

    Article  PubMed  CAS  Google Scholar 

  55. Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H, Inoue N, Ogata H, Iwao Y, Hoshino K, Takeda K, Akira S, Watanabe M, Ishii H, Hibi T (2003) Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol 38:837–844

    Article  PubMed  CAS  Google Scholar 

  56. Allen IC, TeKippe EM, Woodford R-MTM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM, Meunier C, Turbide C, Gros P, Beauchemin N, Vallance BA, Saleh M (2010) Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32:367–378

    Article  PubMed  CAS  Google Scholar 

  58. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Engler DB, Leonardi I, Hartung ML, Kyburz A, Spath S, Becher B, Rogler G, Muller A (2015) Helicobacter pylori-specific protection against inflammatory bowel disease requires the NLRP3 inflammasome and IL-18. Inflamm Bowel Dis 21:854–861

    Article  PubMed  Google Scholar 

  60. Hu B, Elinav E, Huber S, Strowig T, Hao L, Hafemann A, Jin C, Wunderlich C, Wunderlich T, Eisenbarth SC, Flavell RA (2013) Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 110:9862–9867

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O’Connor W Jr, Murphy AJ, Valenzuela DM, Yancopoulos GD, Booth CJ, Cho JH, Ouyang W, Abraham C, Flavell RA (2012) IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491:259–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E (2015) Microbiota-Modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ratsimandresy RA, Indramohan M, Dorfleutner A, Stehlik C (2017) The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol 14:127–142

    Article  PubMed  CAS  Google Scholar 

  64. Seregin SS, Golovchenko N, Schaf B, Chen J, Eaton KA, Chen GY (2017) NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol 10:434–445

    Article  PubMed  CAS  Google Scholar 

  65. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti T-DD (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32:379–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zaki MH, Lamkanfi M, Kanneganti T-DD (2011) The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol 32:171–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O’HUigin C, Marincola FM, Trinchieri G (2010) MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 207:1625–1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Siegmund B (2010) Interleukin-18 in intestinal inflammation: friend and foe? Immunity 32:300–302

    Article  PubMed  CAS  Google Scholar 

  69. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, Low JS, Harman CC, Graham M, Elinav E, Flavell RA (2015) Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163:1444–1456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Matsunaga H, Hokari R, Ueda T, Kurihara C, Hozumi H, Higashiyama M, Okada Y, Watanabe C, Komoto S, Nakamura M, Kawaguchi A, Nagao S, Sekiyama A, Miura S (2011) Physiological stress exacerbates murine colitis by enhancing proinflammatory cytokine expression that is dependent on IL-18. Am J Physiol Gastrointest Liver Physiol 301:G555–G564

    Article  PubMed  CAS  Google Scholar 

  71. Chen GY, Nunez G (2011) Inflammasomes in intestinal inflammation and cancer. Gastroenterology 141:1986–1999

    Article  PubMed  CAS  Google Scholar 

  72. Martins RP, Aguilar C, Graham JE, Carvajal A, Bautista R, Claros MG, Garrido JJ (2013) Pyroptosis and adaptive immunity mechanisms are promptly engendered in mesenteric lymph-nodes during pig infections with Salmonella enterica serovar Typhimurium. Vet Res 44:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ey B, Eyking A, Klepak M, Salzman NH, Gothert JR, Runzi M, Schmid KW, Gerken G, Podolsky DK, Cario E (2013) Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis. J Immunol 190:5676–5688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N, Brown CR, Krantz BA, Leppla SH, Gronert K, Vance RE (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:107–111

    Article  CAS  Google Scholar 

  75. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  76. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  PubMed  CAS  Google Scholar 

  77. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    Article  PubMed  CAS  Google Scholar 

  78. Witola WH, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, Cavailles P, Bisanz C, Cesbron-Delauw MF, Fournie GJ, McLeod R (2011) NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun 79:756–766

    Article  PubMed  CAS  Google Scholar 

  79. Ewald SE, Chavarria-Smith J, Boothroyd JC (2014) NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect Immun 82:460–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cirelli KM, Gorfu G, Hassan MA, Printz M, Crown D, Leppla SH, Grigg ME, Saeij JP, Moayeri M (2014) Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLoS Pathog 10:e1003927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pontillo A, Vendramin A, Catamo E, Fabris A, Crovella S (2011) The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease. Am J Gastroenterol 106:539–544

    Article  PubMed  CAS  Google Scholar 

  82. De Iudicibus S, Stocco G, Martelossi S, Londero M, Ebner E, Pontillo A, Lionetti P, Barabino A, Bartoli F, Ventura A, Decorti G (2011) Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases. J Clin Gastroenterol 45:e1–e7

    Article  PubMed  CAS  Google Scholar 

  83. Williams TM, Leeth RA, Rothschild DE, Coutermarsh-Ott SL, McDaniel DK, Simmons AE, Heid B, Cecere TE, Allen IC (2015) The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. J Immunol 194:3369–3380

    Article  PubMed  CAS  Google Scholar 

  84. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325

    Article  PubMed  CAS  Google Scholar 

  85. Villani AC, Lemire M, Fortin G, Louis E, Silverberg MS, Collette C, Baba N, Libioulle C, Belaiche J, Bitton A, Gaudet D, Cohen A, Langelier D, Fortin PR, Wither JE, Sarfati M, Rutgeerts P, Rioux JD, Vermeire S, Hudson TJ, Franchimont D (2009) Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet 41:71–76

    Article  PubMed  CAS  Google Scholar 

  86. Lewis GJ, Massey DC, Zhang H, Bredin F, Tremelling M, Lee JC, Berzuini C, Parkes M (2011) Genetic association between NLRP3 variants and Crohn’s disease does not replicate in a large UK panel. Inflamm Bowel Dis 17:1387–1391

    Article  PubMed  Google Scholar 

  87. Roberts RL, Topless RK, Phipps-Green AJ, Gearry RB, Barclay ML, Merriman TR (2010) Evidence of interaction of CARD8 rs2043211 with NALP3 rs35829419 in Crohn’s disease. Genes Immun 11:351–356

    Article  PubMed  CAS  Google Scholar 

  88. Schoultz I, Verma D, Halfvarsson J, Torkvist L, Fredrikson M, Sjoqvist U, Lordal M, Tysk C, Lerm M, Soderkvist P, Soderholm JD (2009) Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am J Gastroenterol 104:1180–1188

    Article  PubMed  CAS  Google Scholar 

  89. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E, Schnurr M (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59:1192–1199

    Article  PubMed  CAS  Google Scholar 

  90. Bauer C, Duewell P, Lehr HA, Endres S, Schnurr M (2012) Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors. Dig Dis 30(Suppl 1):82–90

    Article  PubMed  Google Scholar 

  91. Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, Lam V, Potentier MS, Ng K, Bawa M, McCafferty D-MM, Rioux KP, Ghosh S, Xavier RJ, Colgan SP, Tschopp J, Muruve D, MacDonald JA, Beck PL (2011) NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 17:1359–1372

    Article  PubMed  Google Scholar 

  92. Song-Zhao GX, Srinivasan N, Pott J, Baban D, Frankel G, Maloy KJ (2014) Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol 7:763–774

    Article  PubMed  CAS  Google Scholar 

  93. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734

    Article  PubMed  CAS  Google Scholar 

  94. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ, West B, Podoltsev NA, Boggon TJ, Kazmierczak BI, Lifton RP (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC, Flavell RA (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci 107(50):21635–21640. doi:10.1073/pnas.1016814108

    Article  PubMed  PubMed Central  Google Scholar 

  96. Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH, Vijay-Kumar M, Gewirtz AT (2012) Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol 5:288–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Allam R, Maillard MH, Tardivel A, Chennupati V, Bega H, Yu CW, Velin D, Schneider P, Maslowski KM (2015) Epithelial NAIPs protect against colonic tumorigenesis. J Exp Med 212:369–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sellin ME, Muller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM, Hardt WD (2014) Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16:237–248

    Article  PubMed  CAS  Google Scholar 

  99. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K, Vance RE (2017) NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46:649–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, DiStefano PS, Bertin J (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530:73–78

    Article  PubMed  CAS  Google Scholar 

  101. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488:389–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, Elinav E, Finlay BB, Flavell RA (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Birchenough GM, Nystrom EE, Johansson ME, Hansson GC (2016) A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352:1535–1542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wang P, Zhu S, Yang L, Cui S, Pan W, Jackson R, Zheng Y, Rongvaux A, Sun Q, Yang G, Gao S, Lin R, You F, Flavell R, Fikrig E (2015) Nlrp6 regulates intestinal antiviral innate immunity. Science 350:826–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Schulmann K, Brasch FE, Kunstmann E, Engel C, Pagenstecher C, Vogelsang H, Kruger S, Vogel T, Knaebel HP, Ruschoff J, Hahn SA, Knebel-Doeberitz MV, Moeslein G, Meltzer SJ, Schackert HK, Tympner C, Mangold E, Schmiegel W, German HC (2005) HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterol 128:590–599

    Article  CAS  Google Scholar 

  106. Dihlmann S, Tao S, Echterdiek F, Herpel E, Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Kloor M (2014) Lack of absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int J Cancer 135:2387–2396

    Article  PubMed  CAS  Google Scholar 

  107. Vanhove W, Peeters PM, Staelens D, Schraenen A, Van der Goten J, Cleynen I, De Schepper S, Van Lommel L, Reynaert NL, Schuit F, Van Assche G, Ferrante M, De Hertogh G, Wouters EF, Rutgeerts P, Vermeire S, Nys K, Arijs I (2015) Strong upregulation of AIM2 and IFI16 inflammasomes in the mucosa of patients with active inflammatory bowel disease. Inflamm Bowel Dis 21:2673–2682

    Article  PubMed  Google Scholar 

  108. Man SM, Zhu Q, Zhu L, Liu Z, Karki R, Malik A, Sharma D, Li L, Malireddi RK, Gurung P, Neale G, Olsen SR, Carter RA, McGoldrick DJ, Wu G, Finkelstein D, Vogel P, Gilbertson RJ, Kanneganti TD (2015) Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162:45–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Hu B, Jin C, Li HB, Tong J, Ouyang X, Cetinbas NM, Zhu S, Strowig T, Lam FC, Zhao C, Henao-Mejia J, Yilmaz O, Fitzgerald KA, Eisenbarth SC, Elinav E, Flavell RA (2016) The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354:765–768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lian Q, Xu J, Yan S, Huang M, Ding H, Sun X, Bi A, Ding J, Sun B, Geng M (2017) Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res 27(6):784–800. doi:10.1038/cr.2017.54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Oficjalska K, Raverdeau M, Aviello G, Wade SC, Hickey A, Sheehan KM, Corr SC, Kay EW, O’Neill LA, Mills KH, Creagh EM (2015) Protective role for caspase-11 during acute experimental murine colitis. J Immunol 194:1252–1260

    Article  PubMed  CAS  Google Scholar 

  112. Williams TM, Leeth RA, Rothschild DE, McDaniel DK, Coutermarsh-Ott SL, Simmons AE, Kable KH, Heid B, Allen IC (2015) Caspase-11 attenuates gastrointestinal inflammation and experimental colitis pathogenesis. Am J Physiol Gastrointest Liver Physiol 308:G139–G150

    Article  PubMed  CAS  Google Scholar 

  113. Demon D, Kuchmiy A, Fossoul A, Zhu Q, Kanneganti TD, Lamkanfi M (2014) Caspase-11 is expressed in the colonic mucosa and protects against dextran sodium sulfate-induced colitis. Mucosal Immunol 7:1480–1491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research in our lab is supported by grants from National Key Basic Research Programs (2015CB554302, 2014CB541905), Natural Science Foundation of China (31570895, 91429307, 31370892, 81761128012), as well as the Strategic Priority Research Program (XDPB0303) and the International Partnership Program of Chinese Academy of Sciences (153831KYSB20160009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxun Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yao, X., Meng, G. (2017). Inflammasomes in the Gut Mucosal Homeostasis. In: Xu, D. (eds) Regulation of Inflammatory Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-10-5987-2_6

Download citation

Publish with us

Policies and ethics