Advertisement

Leaf Curl Disease of Carica papaya

  • Priyanka Varun
  • Sangeeta SaxenaEmail author
Chapter

Abstract

Papaya leaf curl disease is caused by Papaya leaf curl virus (PaLCuV), a begomovirus naturally transmitted through whitefly (Bemisia tabaci). Main symptoms of papaya leaf curl disease are inward/outward curling of plant leaves, vein thickening, and stunted plant growth with small distorted fruits or no fruits. Papaya leaf curl virus is a major threat for the crop production, and the virus has the capability to adapt new plant hosts very rapidly which helps in their host range extension that also has emerged as an evolving risk in papaya production. Whitefly management is the main method to control the spread of this virus so far. Several diagnostic techniques especially molecular techniques have been developed to detect the begomoviruses at early stages of infection to control the further spread of the begomovirus, but so far not much reports are available to control the begomoviral infection at later stage. This chapter provides the information about many aspects like causal pathogen, vector responsible for disease spread/transmission, host range and phylogenetic analysis of virus associated with the papaya leaf curl disease, and different resistance approaches for possible management of the disease.

References

  1. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743PubMedCrossRefGoogle Scholar
  2. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz M (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238. doi: 10.1186/s13059-015-0799-6 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson PK, Cunningham AA, Patel NG, Morales FJ et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544PubMedCrossRefGoogle Scholar
  4. Antignus Y, Nestel D, Cohen S, Lapidot M (2001) Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight-behavior. Environ Entomol 30(2):394–399CrossRefGoogle Scholar
  5. Aragao FJ, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088PubMedCrossRefGoogle Scholar
  6. Ateyyat MA, Shatnawi M, Mohammad SA (2009) Culturable Whitefly associated bacteria and their potential as biological control agents 2(3):139–144Google Scholar
  7. Azzam OJ, Frazer D, La Rosa D, Beaver JS, Ahlquist P, Maxwell DP (1994) Whitefly transmission and efficient ssDNA accumulation of bean golden mosaic geminivirus require functional coat protein. Virology 204:289–296PubMedCrossRefGoogle Scholar
  8. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM et al (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145. doi: 10.1038/nplants.2015.145 CrossRefGoogle Scholar
  9. Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33(2):351–357PubMedCrossRefGoogle Scholar
  10. Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151:925–935PubMedPubMedCentralCrossRefGoogle Scholar
  11. Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-βsatellites of begomoviruses. Arch Virol 153:763–781PubMedCrossRefGoogle Scholar
  12. Brown JK (2001) Molecular markers for the identification and global tracking of whitefly vector-begomovirus complexes. Virus Res 71:233–260CrossRefGoogle Scholar
  13. Brustolini OJB, Machado JPB, Condori-Apfata JA, Coco D, Deguchi M, Loriato VAP, Pereira WA, Alfenas-Zerbini P, Zerbini FM, Inoue-Nagata AK, Santos AA, Chory J, Silva FF, Fontes EPB (2015) Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnol J. doi: 10.1111/pbi.12349
  14. Butler GDJR, Henneberry TJ (1991) Sweetpotato whitefly control: effect of tomato cultures and plant derived oils. Southwest Entomol 16:37–43Google Scholar
  15. Byun HS, Kil EJ, Seo H, Suh SS, Lee TK, Lee JH, Kim JK, Lee KY, Ko SJ, Lee GS, Choi HS, Kim CS, Lee S (2016) First report of papaya leaf curl virus in papayas in Korea and recovery of its symptoms. Plant Dis 100(9):1958CrossRefGoogle Scholar
  16. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338PubMedCrossRefGoogle Scholar
  17. Chang LS, Lee YS, Su HJ, Hung TH (2003) First report of papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis 87(2):204CrossRefGoogle Scholar
  18. Chen YK, Chao HY, Shih PJ, Tsai WY, Chao CH (2016a) First report of papaya leaf curl Guangdong virus infecting lisianthus in Taiwan. APS, Dis Notes 100(11):2342Google Scholar
  19. Chen H, Lin C, Tsai W et al (2016b) Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains. J Plant Biochem Biotechnol 25(2):199–207. doi: 10.1007/s13562-015-0325-7 CrossRefGoogle Scholar
  20. Cheng YH, Deng TC, Chen CC et al (2014) First report of Euphorbia leaf curl virus and papaya leaf curl Guangdong virus on passion fruit in Taiwan. Plant Dis 98(12):1746CrossRefGoogle Scholar
  21. Culik MP, Martins DDS (2004) First record of Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae) on Carica papaya L. in the state of Espírito Santo, Brazil. Neotrop Entomol 33(5):659–660CrossRefGoogle Scholar
  22. Culik MP, Martins DDS, Ventura JA (2003) Índice de artrópodes pragas do mamoeiro (Carica papaya L.). INCAPER, Vitória, p 48Google Scholar
  23. Czosnek H (2008) Acquisition, circulation and transmission of begomoviruses by their whitefly vectors. In: Viruses in the environment 37/661(2). Research Signpost, Trivandrum. ISBN: 978-81-308-0235-0Google Scholar
  24. Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354Google Scholar
  25. Dawson WO, Hilf ME (1992) Host range determination of plant viruses. Annu Rev Plant Physiol Plant Mol Biol 43:527–555CrossRefGoogle Scholar
  26. Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88:6721–6725PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dubey DK, Pandey N, Tiwari AK, Upadhaya PP (2015a) Biological properties, transmission, serological characterization and varietal susceptibility of an isolate of papaya leaf curl virus affecting papaya crops in eastern Uttar Pradesh, India. Arch Phytopathol Plant Protect. doi: 10.1080/03235408.2015.1091135
  28. Dubey DK, Tiwari AK, Upadhyay PP (2015b) Survey, incidence and serological identification of papaya leaf curl virus in eastern Uttar Pradesh. Indian Phytopath 68(1):123–126Google Scholar
  29. Edelbaum D, Gorovits R, Sasaki S, Ikegami M, Czosnek H (2008) Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to tomato yellow leaf curl virus and cucumber mosaic virus, but not to grapevine virus A or tobacco mosaic virus. Arch Virol 154:399–407CrossRefGoogle Scholar
  30. Erickson RP, Izant JG (1992) Gene regulation: biology of antisense RNA and DNA. Raven press, New York, p 364Google Scholar
  31. Flint ML (2015) Integrated pest management for homes, gardens, and landscapes. Pest Notes: Whiteflies Univ. Calif. Agric. Nat. Res. Publ.: 7401Google Scholar
  32. Fontes EPB, Santos AA, Luz DF, Waclawovsky AJ, Chory J (2004) The geminivirus NSP acts as virulence factor to suppress an innate transmembrane receptor kinase-mediated defense signaling. Genes Dev 18:2545–2556PubMedPubMedCentralCrossRefGoogle Scholar
  33. Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hort 695:225–240CrossRefGoogle Scholar
  34. Gafni Y, Epel B (2002) The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol 60:231–241CrossRefGoogle Scholar
  35. Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25PubMedCrossRefGoogle Scholar
  36. Gilbertson RL, Rojas M, Natwick E (2011) Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci)-transmissible geminiviruses. In: Thompson WMO (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. pp 323–356Google Scholar
  37. Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol 2:67–93PubMedCrossRefGoogle Scholar
  38. Gillette WK, Meade TJ, Jeffrey JL, Petty IT (1998) Genetic determinants of host-specificity in bipartite geminivirus DNA A components. Virology 251:361–369PubMedCrossRefGoogle Scholar
  39. Gonsalves C, Lee DR, Gonsalves D (2007) The adoption of genetically modified papaya in Hawaii and its implications for developing countries. J Dev Stud 43(1):177–191CrossRefGoogle Scholar
  40. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34PubMedCrossRefGoogle Scholar
  41. Guo T, Guo Q, Cui X, Liu Y et al (2015) Comparison of transmission of papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex. Sci Rep 5:15432. doi: 10.1038/srep15432 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hallan V, Saxena S, Singh BP (1998a) Ageratum, croton and malvastrum harbour geminiviruses: evidence through PCR amplification. World J Microb Biot 14:931–932CrossRefGoogle Scholar
  43. Hallan V, Saxena S, Singh BP (1998b) Yellow net of Triumfetta is caused by a geminivirus: a first report. Plant Dis 82(1):127.1–127.1CrossRefGoogle Scholar
  44. Hanson P, Lu SF, Wang JF, Chen W, Kenyon L et al (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic 201:346–354CrossRefGoogle Scholar
  45. Haung JF, Zhou XP (2006) First report of papaya leaf curl China virus infecting Corchoropsis tomentosa in China. Plant Pathol 55:291CrossRefGoogle Scholar
  46. Hemambara HS, Yogesh MS (2014) Production and marketing problems of papaya growers in north Karnataka. IOSR-JBM 16(7):20–23Google Scholar
  47. Ilyas M, Qazi J, Mansoor S, Briddon RW (2010) Genetic diversity and phylogeography of begomoviruses infecting legumes in Pakistan. J Gen Virol 91:2091–2101PubMedCrossRefGoogle Scholar
  48. Indian Horticulture Database, Saxena M, Gandhi CP (eds) National Horticulture Board, Ministry of Agriculture, Government of India, Gurgaon. p 248. URL: http://nhb.gov.in/area-pro/NHB_Database_2015.pdf. Accessed 15 Jan 2017
  49. Inoue-Nagata AK, Lima MF, Gilbertson RL (2016) A review of geminivirus (begomovirus) diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic Bras 34:8–18CrossRefGoogle Scholar
  50. Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475. doi: 10.3389/fpls.2016.00475 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492PubMedCrossRefGoogle Scholar
  52. Javaid S, Amin I, Jander G, Mukhtar Z (2016) A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Sci Rep 6:34706PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR– Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:144. doi: 10.1038/nplants.2015.144 Google Scholar
  54. Khalil RR, Bassiouny FM, El-Dougdoug KA, Abo-Elmaty S, Yousef MS (2014) A dramatic physiological and anatomical changes of tomato plants infecting with tomato yellow leaf curl geminivirus. J Agric Tech 10(5):1213–1229Google Scholar
  55. Khan MS, Tiwari AK, Ji SH, Chun SC (2012) Ageratum conyzoides and its role in begomoviral epidemics; Ageratum enation virus: an emerging threat in India. Vegetos 24(2):20–28Google Scholar
  56. Khan MS, Tiwari AK, Khan AA, Ji SH, Chun SC (2013) Tomato yellow leaf curl virus (TYLCV) and its possible management: a review. Vegetos 26(2S):139–147Google Scholar
  57. Khan MS, Tiwari AK, Raj SK, Srivastava A, Ji SH, Chun SC (2014) Molecular epidemiology of begomoviruses occurring on vegetables, grain legume and weed species in Terai belt of north India. J Plant Dis Protect 121(2):53–57CrossRefGoogle Scholar
  58. Khatoon S, Kumar A, Sarin NB, Khan JA (2016) RNAi-mediated resistance against cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes 52:530–537PubMedCrossRefGoogle Scholar
  59. Kumar J, Kumar A, Khan JA, Aminuddin (2009) First report of papaya leaf curl virus naturally infecting tobacco in India. J Plant Path 91(4 - Supplement):S4–107Google Scholar
  60. Kunik T, Salomon R, Zamair D, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12:500–504PubMedCrossRefGoogle Scholar
  61. Lapidot M, Friedman M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127. doi: 10.1111/j.1744-7348.2002.tb00163.x CrossRefGoogle Scholar
  62. Lee W, Park J, Lee GS, Seunghwan LS, Akimoto SI (2013) Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8(5):e63817PubMedPubMedCentralCrossRefGoogle Scholar
  63. Legaspi JC, Simmons AM (2012) Evaluation of selected commercial oils as oviposition deterrents against the silverleaf whitefly, Bemisia argentifolii (Hemiptera: Aleyrodidae). Subtrop Plant Sci 64:49–53Google Scholar
  64. Lilley DMJ (2003) The origins of RNA catalysis in ribozymes. Trends Biochem Sci 28:495–501PubMedCrossRefGoogle Scholar
  65. Lindbo J, Silva-Rosales L, Proebsting W, Dougherty W (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lopez EP, Pantoja ML (2012) Main bacterial diseases affecting papaya, pineapple and mangoes. Citrifrut 29(1):28–34Google Scholar
  67. Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, Zhang CX, Liu SS, Wang XW (2011) Global analysis of the transcriptional response of whitefly to Tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol 85:3330–3340PubMedPubMedCentralCrossRefGoogle Scholar
  68. Macpherson JL, Boyd MP, Arndt AJ, Todd AV, Fanning GC, Ely JA, Elliott F, Knop A, Raponi M et al (2005) Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J Gene Med 7:552–564PubMedCrossRefGoogle Scholar
  69. Mansoor S, Briddon RW, Bull SE, Bedford ID, Bashir A, Hussain M et al (2003) Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA beta. Arch Virol 148:1969–1986PubMedCrossRefGoogle Scholar
  70. Marathe R, Anandalakshmi R, Smith TH, Pruss GJ, Vance VB (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol Biol 43:295–306PubMedCrossRefGoogle Scholar
  71. Masabni J, Anciso J, Wallace R (2011) What makes tomato leaves twist or curl? Texas A&M AgriLife Extension Service: E-626. AgriLifeExtension.tamu.eduGoogle Scholar
  72. Maule AJ, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8:223–231PubMedCrossRefGoogle Scholar
  73. Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566. doi: 10.1094/PHYTO-05-11-0157 PubMedCrossRefGoogle Scholar
  74. Mishra M, Chandra R, Saxena S (2007) Papaya. In: Kole C (ed) Genome mapping and molecular breeding in plants- fruits and nuts, vol 4. Springer, New York, pp 230–257Google Scholar
  75. Mishra SK, Chilakamarthi U, Deb JK, Mukherjee SK (2014) Unfolding of in planta activity of anti-rep ribozyme in presence of a RNA silencing suppressor. FEBS Lett 588:1967–1972PubMedCrossRefGoogle Scholar
  76. Mishra R, Gaur R K, Patil BL (2016) Current knowledge of viruses infecting papaya and their transgenic management. Chapter Plant viruses: evolution and management, pp 189–203Google Scholar
  77. Morales FJ (2001) Conventional breeding for resistance to Bemisia tabaci-transmitted geminiviruses. Crop Prot 20:825–834CrossRefGoogle Scholar
  78. Morroni M, Thompson JR, Tepfer M (2008) Twenty years of transgenic plants resistant to cucumber mosaic virus. Mol Plant-Microbe Interact 21:675–684PubMedCrossRefGoogle Scholar
  79. Nadeem A, Mehmood T, Tahir M, Khalid S, Xiong Z (1997) First report of papaya leaf curl disease in Pakistan. Plant Dis 81(11):1333CrossRefGoogle Scholar
  80. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289PubMedPubMedCentralCrossRefGoogle Scholar
  81. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotech 24:1420–1428CrossRefGoogle Scholar
  82. Pantoja A, Follett PA, Villanueva-Jiménez JA (2002) Pests of papaya. In: Pena J, Sharp J, Wysoki M (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control, pp 131–156Google Scholar
  83. Papaya Diseases & its Control (n.d.) http://agropedia.iitk.ac.in. Accessed 22 Dec 2016
  84. Paula FT, Gustavo AF, Marcia ER (2007) Viruses infecting papaya (Carica papaya L.): etiology, pathogenesis and molecular biology. Plant Viruses 1(2):172–188Google Scholar
  85. Pramesh D, Mandal B, Phaneendra C, Muniyappa V (2013) Host range and genetic diversity of croton yellow vein mosaic virus, a weed-infecting monopartite begomovirus causing leaf curl disease in tomato. Arch Virol 158:531–542. doi: 10.1007/s00705-012-1511-8 PubMedCrossRefGoogle Scholar
  86. Prasad JS, Verma RAB (1980) Efficacy of certain antibiotics in the control of postharvest decay of papaya fruits. Phytoparasitica 8:105. doi: 10.1007/BF02994505 CrossRefGoogle Scholar
  87. Raj SK, Snehi SK, Khan MS, Singh R, Khan AA (2008) Molecular evidence for association of tomato leaf curl New Delhi virus with leaf curl disease of papaya (Carica papaya L.) in India. Australasian Plant Dis. Notes 3:152–155CrossRefGoogle Scholar
  88. Raj SK, Snehi SK, Tiwari AK, and Rao GP (2010) Biological, molecular identification and management strategies of Begomovirus infecting cucurbitaceous crops in India, Published from LLC Press USA (2010) Recent trades in Plant Virology. In: Rao GP, Baranawal VK, Mandal B, Rishi N (eds). Studium Press LLC, USA, p 135–155Google Scholar
  89. Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560PubMedCrossRefGoogle Scholar
  90. Rawell RD (2010) Fungal diseases of papaya and their management. IInd international symposium on papaya, ISHS Acta hort 851,  10.17660/ActaHortic.2010.851.68
  91. Raza A, Malik HJ, Shafiq M, Amin I, Scheffler JA, Scheffler BE et al (2016) RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): potential technology for the control of whitefly. PLoS One 11(4):e0153883. https://doi.org/10.1371/journal.pone.0153883 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Reddy MK, Venkataravanappa V, Madhuvanthi B, Jalali S (2010) Molecular characterization of Begomoviruses associated with papaya leaf curl disease in India. IInd IS on Papaya Acta hort: 465–472.  10.17660/ActaHortic.2010.851.72
  93. Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L (2013) Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87:9691–9706PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rojas MR, Jiang H, Salati R, Xoconostle-Cázares B, Sudarshana MR, Lucas WJ et al (2001) Functional analysis of proteins involved in movement of the monopartite Begomovirus, tomato yellow leaf curl virus. Virology 291:110–125. doi: 10.1006/viro.2001.1194 PubMedCrossRefGoogle Scholar
  95. Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100:4429–4434PubMedPubMedCentralCrossRefGoogle Scholar
  96. Saeed ST, Samad A (2016) Emerging threats of begomoviruses to the cultivation of medicinal and aromatic crops and their management strategies. VirusDis. doi: 10.1007/s13337-016-0358-0
  97. Sagar SB, Parmar HC, Darji VB (2012) Economics of production of papaya in middle Gujarat region of Gujarat, India. GJBAHS 1(2):10–17Google Scholar
  98. Sahu AK, Nehra C, Gaur RK (2015) Molecular diversity of monopartite begomovirus coat protein and betasatellite associated with different crop species in India. Phytoparasitica 43:81–85. doi: 10.1007/s12600-014-0418-1 CrossRefGoogle Scholar
  99. Saxena S, Hallan V, Singh BP, Sane PV (1998a) Leaf curl disease of Carica papaya from India may be caused by a bipartite geminivirus. Plant Dis 82(1):126CrossRefGoogle Scholar
  100. Saxena S, Hallan V, Singh BP, Sane PV (1998b) Evidence from nucleic acid hybridization tests for a geminivirus infection causing leaf curl disease of papaya in India. Indian J Exp Biol 36:229–232Google Scholar
  101. Saxena S, Hallan V, Singh BP, Sane PV (1998c) Nucleotide sequence and inter-geminiviral homologies of the DNA A of papaya leaf curl geminivirus from India. Biochem Mol Biol Int 45:101–113PubMedGoogle Scholar
  102. Saxena S, Chandra R, Srivastava AP, Mishra M, Pathak RK, Ranade SA (2005) Analysis of genetic diversity among papaya cultivars using single primer amplification reaction (SPAR) methods. J Hort Sci Tech 80(3):291–296Google Scholar
  103. Saxena S, Singh N, Ranade SA, Sunil GB (2011) Strategy for generic resistance to geminiviruses infecting tomato and papaya through in silico siRNA search. Virus Genes 43:409–434PubMedCrossRefGoogle Scholar
  104. Saxena S, Rupesh KK, Singh V (2013) Designing of putative siRNA against geminiviral suppressors of RNAi to develop geminivirus-resistant papaya crop. Int J Bioinforma Res Appl 9(1):3–12CrossRefGoogle Scholar
  105. Saxena S, Singh VK, Verma S (2016) PCR mediated detection of sex and PaLCuV infection in papaya- a review. J Appl Hortic 18(1):80–84Google Scholar
  106. Schubert S, Kurreck J (2004) Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 5:667–681PubMedCrossRefGoogle Scholar
  107. Settlage SB, See RG, Hanley-Bowdoin L (2005) Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 79:9885–9895. doi: 10.1128/JVI.79.15.9885-9895 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H et al (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051PubMedCrossRefGoogle Scholar
  109. Sieburth LE, Drews GN, Meyerowitz EM (1998) Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125:4303–4312PubMedGoogle Scholar
  110. Srivastava N, Chandra R, Saxena S, Bajpai A (2010) PCR based amplification and detection of papaya leaf curl virus (PaLCuV). A proceeding of IInd IS on papaya. Acta Hort 851:241–245CrossRefGoogle Scholar
  111. Srivastava A, Raj SK, Kumar S, Snehi SK (2013) New record of papaya leaf curl virus and ageratum leaf curl beta-satellite associated with yellow vein disease of aster in India. New Dis Rep 28:6CrossRefGoogle Scholar
  112. Srivastava A, Jaidi M, Kumar S, Raj SK, Shukla S (2015) Association of papaya leaf curl virus with the leaf curl disease of grain amaranth (Amaranthus cruentus L.) in India. Phytoparasitica 43:97–101CrossRefGoogle Scholar
  113. Sunitha S, Marian D, Hohn B, Veluthambi K (2011) Antibegomoviral activity of the agrobacterial virulence protein VirE2. Virus Genes 43:445–453PubMedCrossRefGoogle Scholar
  114. Tajul MI, Naher K, Hossain T, Siddiqui Y, Sariah M (2011) Tomato yellow leaf curl virus (TYLCV) alters the phytochemical constituents in tomato fruits. AJCS 5:575–581Google Scholar
  115. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  116. Taylor DR (2001) Virus diseases of Carica papaya in Africa – their distribution, importance, and control. Rice Research Station, PMB 736, Freetown, Sierra Leone, Plant virology in sub-Saharan AfricaGoogle Scholar
  117. Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS One 9(3):e87235. https://doi.org/10.1371/journal.pone.0087235 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Thomas KM, Krishnaswamy CS (1939) Leaf crinkle: a transmissible disease of papaya. Curr Sci 8:316Google Scholar
  119. Tiwari AK, Rao GP (2014) Viruses infecting Cucurbita pepo: current status and management. In: Kharwar RN et al (eds) Microbial diversity and biotechnology in food security. © Springer, India. 2014, pp 357–371Google Scholar
  120. Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:7–20CrossRefGoogle Scholar
  121. Usman N, Blatt LM (2000) Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest 106:1197–1202PubMedPubMedCentralCrossRefGoogle Scholar
  122. Vieira MR, Correa LS (2001) Whiteflies (Hemiptera: Aleyrodidae) and the predator Delphastus pusillus (le Conte) (Coleoptera: Coccinellidae) on papaya tree (Carica papaya L.) grown under screened conditions. Neotrop Entomol 30:171–173CrossRefGoogle Scholar
  123. Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553PubMedCrossRefGoogle Scholar
  124. Wang XY, Xie YZhou XP (2004) Molecular characterization of two distinct begomoviruses from papaya in China. Virus Genes 29:303–309PubMedCrossRefGoogle Scholar
  125. Wang LL, Wang XR, Wei XM, Huang H, Wu JX, Chen XX et al (2016) The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12(9):1560–1574PubMedPubMedCentralCrossRefGoogle Scholar
  126. Weng DE, Masci PA, Radka SF, Jackson TE, Weiss PA, Ganapathi R, Elson PJ, Capra WB, Parker VP, Lockridge JA, Cowens JW, Usman N, Borden EC (2005) A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 4:948–955PubMedCrossRefGoogle Scholar
  127. Yang CX, Luo JS, Zheng LM, Wu ZJ, Xie LH (2011) Mixed infection of papaya leaf curl China virus and Siegesbeckia yellow vein virus in Sigesbeckia orientalis in China. J Plant Pathol 93(4, Supplement):S4–81Google Scholar
  128. Yeam I (2016) Current advances and prospectus of viral resistance in horticultural crops. Hortic Environ Biotechnol 57(2):113–122. 2016. doi: 10.1007/s13580-016-0105-x CrossRefGoogle Scholar
  129. Zhang H, Ma XY, Qian YJ, Zhou XP (2010) Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. J Zhejiang Univ-SCI B 11:109–114. 2010PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zinnen SP, Domenico K, Wilson M, Dickinson BA, Beaudry A, Mokler V, Daniher AT, Burgin A, Beigelman L (2002) Selection, design, and characterization of a new potentially therapeutic ribozyme. RNA 8:214–228PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Bioscience and BiotechnologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations