Advertisement

Begomovirus Disease Management Measures, Now and Then

  • Susheel Kumar
  • Ashish Srivastava
  • Aarti Kumari
  • Rashmi Raj
  • Meraj Jaidi
  • S. K. Raj
Chapter

Abstract

The diseases caused by genus Begomovirus (family Geminiviridae) are limiting factors in the sustainable crop production throughout the world and majorly in the tropical and subtropical regions of the world. Furthermore, liberalization of agriculture led to change in the agricultural practices and developed significant opportunities for whitefly-borne begomoviruses to disseminate subsequently to newer climatic zones of the favorable environment. As a result, they negate the subsistence agriculture as well as the socioeconomic of the geographic area where they intrude. Consequently, the crop production failure led to considerable financial losses and food insecurity not only for resource-poor directly dependent farmers of developing nations but also indirectly for the developed nations, and therefore management of begomoviruses is essential. As there is no “one-size-fits-all” approach for management of begomovirus diseases, thus together with the prophylactic measures, in the modern era, the integrated pest management strategies (IPMS) have come into existence to provide developing sustainable and environment-friendly novel approaches to limit the crop losses. The present compilation of leading researches in this realm would provide the vast view and understanding of begomovirus diseases and a glimpse of approaches employed for management of begomovirus disease in Asia and Africa, where they greatly affect agriculture.

Keywords

Begomovirus Whitefly Disease management Biotechnological approaches Conventional approaches Integrated pest management 

References

  1. Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP (2006) Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol 151:2349–2363CrossRefPubMedGoogle Scholar
  2. Agrios GN (1978) Plant pathology, 2nd edn. Academic, San Diego, pp 466–470Google Scholar
  3. Ali I, Amin I, Briddon RW, Mansoor S (2013) Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus. Virol J 10:231CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anbinder I, Reuveni M, Azari R, Paran I, Nahon S et al (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530CrossRefPubMedGoogle Scholar
  5. Baig MS, Khan J (2013) Identification of Gossypium hirsutum miRNA targets in the genome of Cotton leaf curl Multan virus and Betasatellite. Indian J Biotechnol 12:336–342Google Scholar
  6. Barbieri M, Acciarri N, Sabatini E, Sardo L, Accotto GP, Pecchioni N (2010) Introgression of resistance to two mediterranean virus species causing tomato yellow leaf curl into a valuable traditional tomato variety. J Plant Pathol 92:485–493Google Scholar
  7. Beachy RN, Loesch-Frie S, Tumer NE (1990) Coat protein mediated resistance against virus infection. Annu Rev Phytopathol 28:451–474CrossRefGoogle Scholar
  8. Bendahmane M, Beachy RN (1999) Control of tobamovirus infections via pathogen-derived resistance. Adv Virus Res 53:369–386CrossRefPubMedGoogle Scholar
  9. Blevins T, Rajeswaran R, Aregger M, Borah BK, Schepetilnikov M, Baerlocher L, Farinelli L, Meins M, Hohn T, Pooggin MM (2011) Massive production of small RNAs from a non-coding region of cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39(12):5003–5014CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bradbent L, Burt PE, Heathcote CD (1956) The control of potato viruses by insecticides. Ann Appl Biol 44:256–273CrossRefGoogle Scholar
  11. Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L (2013) Status and prospects of plant virus control through interference with vector transmission. Annu Rev Phytopathol 51:177–201CrossRefPubMedGoogle Scholar
  12. Brown JK, Fauquet CM, Briddon RW, Zerbini FM, Moriones E, Navascastillo J (2012) Family Geminiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy. 9th report of the international committee on taxonomy of viruses. Elsevier Academic Press, London. 1327ppGoogle Scholar
  13. Brunetti A, Tavazza M, Noris E, Tavazza R, Caciagli P, Ancor AG, Crespi S, Accott OGP (1997) High expression of truncated viral Rep protein confers resistance to Tomato yellow leaf curl virus in transgenic tomato plants. Mol Plant-Microbe Interact 10:571–579CrossRefGoogle Scholar
  14. Brunetti A, Tavazza R, Noris E, Lucioli A, Accotto GP, Tavazza M (2001) Transgenically expressed T-Rep of Tomato yellow leaf curl Sardinia virus acts as a transdominant-negative mutant, inhibiting viral transcription and replication. J Virol 75:10573–10581CrossRefPubMedPubMedCentralGoogle Scholar
  15. Callaway A, Giesman-Cookmeyer D, Gillock ET, Sit TL, Lommel SA (2001) The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39:419–460CrossRefPubMedGoogle Scholar
  16. Campos SS, Ayala AM, Martin BM, Caballero LA, Castillo JN, Moriones E (2013) Ful-filling Koch’s postulates confirms the monopartite nature of Tomato leaf deformation virus a begomovirus native to the New World. Virus Res 173:286–293CrossRefGoogle Scholar
  17. Chague V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677CrossRefGoogle Scholar
  18. De Bruyn A, Villemot J, Lefeuvre P, Villar E, Hoareau M, Harimalala M, Abdoul-Karime AL, Abdou-Chakour C, Reynaud B, Harkins GW, Varsani A, Martin DP, Lett JM (2012) East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus. BMC Evol Biol 12:228CrossRefPubMedPubMedCentralGoogle Scholar
  19. Du T (1948) The control of spotted wilt tomato. Farming S Afr 23:786–788Google Scholar
  20. Duffy S, Holmes EC (2008) Phylogenetic evidence for rapid rates of molecular evolution in the single stranded DNA begomovirus Tomato yellow leaf curl virus. J Virol 82:957–965CrossRefPubMedGoogle Scholar
  21. Faria JC, Zerbini FM (2000) FamÃlia Geminiviridae 3/4 taxonomia, replicação e movimento. Rev Anu Patol Plant 8:27–57Google Scholar
  22. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821CrossRefPubMedGoogle Scholar
  23. Fraser RSS (1990) The genetics of resistance to plant viruses. Annu Rev Phytopathol 28:179–200CrossRefGoogle Scholar
  24. Freitas-Astúa J, Purcifull DE, Polston JE, Hieber TE (2002) Traditional and transgenic strategies for controlling tomato infecting begomoviruses. Fitopatol Bras 27:437–449CrossRefGoogle Scholar
  25. Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244:1293–1299CrossRefPubMedGoogle Scholar
  26. Gonsalves D, Slightom JL (1993) Coat-protein mediated protection: analysis of transgenic plants for resistance in a variety of crops. Semin Virol 4:397–406CrossRefGoogle Scholar
  27. Grumet R (1994) Development of virus resistant plants via genetic engineering. Plant Breed Rev 12:47–79Google Scholar
  28. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefPubMedGoogle Scholar
  29. Hanson PM, Bernacchi D, Green S (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 125:15–20Google Scholar
  30. Harkins GW, Delport W, Duffy S, Wood N, Monjane AL, Owor BE, Donaldson L, Saumtally S, Triton G, Briddon RW, Shepherd DN, Rybicki EP, Martin DP, Varsani A (2009) Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol J 6:104CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296CrossRefPubMedGoogle Scholar
  32. Hilje L, Costa HS, Stansly PA (2001) Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot 20:801–812CrossRefGoogle Scholar
  33. Horowitz AR, Antignus Y, Gerling D (2011) In: WMO T (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, Dordrecht, pp 293–322CrossRefGoogle Scholar
  34. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes to plants. Science 227:1229–1231CrossRefGoogle Scholar
  35. Hull R, Davies JW (1992) Approaches to non-conventional control of plant virus diseases. Crit Rev Plant Sci 11:17–33CrossRefGoogle Scholar
  36. Hutton SF, Scott JW, Schuster DJ (2012) Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar Tyking is located in same region as Ty-5 on chromosome 4. J Am Soc Hortic Sci 47:324–327Google Scholar
  37. Jain RK, Varma A (2000) Biotechnological management of viral diseases of plants. In: Trivedi PC (ed) Plant diseases. Pointer Publishers, Jaipur, pp 1–20Google Scholar
  38. Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284CrossRefGoogle Scholar
  39. Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 343–362CrossRefGoogle Scholar
  40. Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009) Molecular mapping of Ty-4, a tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hortic Sci 134:281–288Google Scholar
  41. Khan MS, Raj SK, Singh BP (2003) Some weeds as new hosts of geminivirus as evidenced by molecular probes. Indian J Plant Pathol 21:82–85Google Scholar
  42. Khan MS, Raj SK, Singh R (2006) First report of Tomato leaf curl New Delhi virus infecting chili in India. Plant Pathol 55:289CrossRefGoogle Scholar
  43. Khan MS, Tiwari AK, Ji SH, Chun SC (2012) Ageratum conyzoides and its role in Begomoviral epidemics; Ageratum enation virus: an emerging threat in India. Vegetos 24(2):20–28Google Scholar
  44. Khan MS, Tiwari AK, Khan AA, Ji SH, Chun SC (2013) Tomato yellow leaf curl virus (TYLCV) and its possible management. Rev: Vegetos 26(2S):139–147Google Scholar
  45. Khan MS, Tiwari AK, Raj SK, Srivastava A, Ji SH, Chun SC (2014) Molecular epidemiology of begomoviruses occurring on vegetables, grain legume and weed species in Terai belt of north India. J Plant Dis Protect 121(2):53–57CrossRefGoogle Scholar
  46. Kumar S, Raj SK, Sharma AK, Varma HN (2012) Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Sci Hortic 134:40–45CrossRefGoogle Scholar
  47. Kumar J, Kumar J, Singh SP, Tuli R (2014) Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J Virol 88:7093–7104Google Scholar
  48. Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the Tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technol 12:500–504CrossRefGoogle Scholar
  49. Kunkalikar S, Byadgi AS, Kulkarni VR, Reddy MK (2006) Management of Papaya ring spot virus disease. Indian J Virol 17:39–43Google Scholar
  50. Legg JP, Fauquet CM (2004) Cassava mosaic geminiviruses in Africa. Plant Mol Biol 56:585–599CrossRefPubMedGoogle Scholar
  51. Lima AT, Sobrinho RR, Lez-Aguilera JG, Rocha CS, Silva SJC, Xavier CAD, Silva FN, Duffy S, Zerbin FM (2012) Synonymous site variation due to recombination explains higher variability in begomovirus populations infecting non-cultivated hosts. J Gen Virol 94:418–431CrossRefPubMedGoogle Scholar
  52. Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343CrossRefPubMedGoogle Scholar
  53. Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, Navas-Castillo J (2016) Characterization of non-coding DNA satellites associated with Sweepoviruses (genus Begomovirus, Geminiviridae) definition of a distinct class of Begomovirus associated satellites. Front Microbiol 7:162CrossRefPubMedPubMedCentralGoogle Scholar
  54. Martin DP, Lefeuvre P, Varsani A, Hoareau M, Semegni JY, Dijoux B, Vincent C, Reynaud B, Lett JM (2011) Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. PLoS Pathog 7:e1002203CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mayo MA (1992) Organization of viral genomes: the potential of virus genes in the production of transgenic virus-resistant plants. In: Moss JP (ed) Biotechnology and crop improvement in Asia. International Crop Research Institute for the Semi-Arid Tropics, Patancheru, pp 251–263Google Scholar
  56. Mehrotra RS (1991) Plant pathology, 8th edn. Tata McGraw Hill-publishing, New DelhiGoogle Scholar
  57. Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87:5397–5413CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mishra SK, Chilakamarthi U, Deb JK, Mukherjee SK (2014) Unfolding of in planta activity of anti-rep ribozyme in presence of a RNA silencing suppressor. FEBS Lett 588(10):1967–1972CrossRefPubMedGoogle Scholar
  59. Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248CrossRefPubMedGoogle Scholar
  60. Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832CrossRefPubMedGoogle Scholar
  61. Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazz AM (1996) Resistance to Tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224:130–138CrossRefPubMedGoogle Scholar
  62. Pappu HR, Niblett CL, Lee RF (1995) Application of recombinant DNA technology to plant protection: molecular approaches to engineering virus resistance in crop plants. World J Microbiol Biotechnol 11:426–437CrossRefPubMedGoogle Scholar
  63. Pelham J, Fletcher JT, Hawkins JH (1970) The establishment of a new strain of Tobacco mosaic virus resulting from the use of resistant varieties of tomato. Ann Appl Biol 75:293CrossRefGoogle Scholar
  64. Polston JE, Anderson PK (1997) The emergence of whitefly transmitted geminiviruses in tomato in the western hemisphere. Plant Dis 81:1358–1369CrossRefGoogle Scholar
  65. Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232:738–743CrossRefGoogle Scholar
  66. Pratap D, Kumar S, Raj SK, Sharma AK (2011) Agrobacterium mediated transformation of eggplant (Solanum melongena L.) using cotyledon explants and coat protein gene of Cucumber mosaic virus. Indian J Biotechnol 10:19–24Google Scholar
  67. Pratap D, Raj SK, Kumar S, Gautam KK, Sharma AK (2012) Coat protein-mediated transgenic resistance in tomato against a IB subgroup Cucumber mosaic virus strain. Phytoparasitica 40:375–382CrossRefGoogle Scholar
  68. Prins M, Goldbach R (1998) The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35CrossRefPubMedGoogle Scholar
  69. Raj SK, Singh R, Pandey SK, Singh BP (2005) Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing Tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr Sci 88(10):1674–1679Google Scholar
  70. Ramesh SV, Gupta GK, Husain SM (2016) Soybean (Glycine max) microRNAs display proclivity to repress begomovirus genomes. Curr Sci 110(3):424–428CrossRefGoogle Scholar
  71. Reddy RV, Colvin J, Muniyappa V, Seal S (2005) Diversity and distribution of begomoviruses infecting tomato in India. Arch Virol 150:845–867CrossRefPubMedGoogle Scholar
  72. Reimann-Phillipp U (1998) Mechanism of resistance: expression of coat protein. In: Foster GD, Taylor SC (eds) Methods in molecular biology, plant virology protocols: from virus isolation to transgenic resistance, vol 81. Human press, TotowaGoogle Scholar
  73. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394CrossRefPubMedGoogle Scholar
  74. Sastry KS (1984) Management of plant virus diseases by oil sprays. In: Misra A, Polosa H (eds) Virus ecology. South Asian Publishers, New Delhi, pp 31–57Google Scholar
  75. Sastry KS (1989) Tomato leaf curl virus management by carbofuran plus oil combination. J Turk Phytopathol 18:11–16Google Scholar
  76. Sastry KSM, Singh SJ (1973) Field evaluation of insecticides for control of whitefly (Bemisia tabaci) in relation to the incidence of yellow vein mosaic of okra (Abelmoschus esculentus). Indian Phytopathol 26:129–138Google Scholar
  77. Sastry KS, Sastry KSM, Singh SJ (1974) Influence of different insecticides on Tomato leaf curl virus incidence in the field. Pesticides 8:41–42Google Scholar
  78. Sattar MN, Kvarnheden A, Saeed M, Briddon RW (2013) Cotton leaf curl disease-an emerging threat to cotton production worldwide. J Gen Virol 94:695–710CrossRefPubMedGoogle Scholar
  79. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954CrossRefPubMedGoogle Scholar
  80. Shepherd DN, Martin DP, Walt EVD, Dent K, Varsani A, Rybicki EP (2010) Maize streak virus an old and complex ‘emerging’ pathogen. Mol Plant Pathol 11:1–12CrossRefPubMedGoogle Scholar
  81. Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H, Thakur N, Rai P, Pandey P, Hans AL, Srivastava S, Rajapure V, Yadav SK, Singh MK, Kumar J, Chandrashekar K, Verma PC, Singh AP, Nair KN, Bhadauria S, Wahajuddin M, Singh S, Sharma S, Omkar URS, Ranade SA, Tuli R, Singh PK (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34(10):1046–1051CrossRefPubMedGoogle Scholar
  82. Singh J, Sohi AS, Mann HS, Kapoor SP (1994) Studies on whitefly Bemisia tabaci (Genn.) transmitted Cotton leaf curl virus disease in Punjab. J Insect Sci 7:194–198Google Scholar
  83. Singh A, Taneja J, Dasgupta I, Mukherjee SK (2015) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16(7):724–734CrossRefPubMedGoogle Scholar
  84. Somvanshi P, Khan MS, Raj SK, Seth PK (2009) Ageratum conizoides and Parthenium hystorophorous: alternate hosts of Begomovirus and Phytoplasma. International day for Biological diversity, Invasive Alien Species, Souvenir. p 44–45Google Scholar
  85. Srivastava A, Raj S K, Kumar S, Snehi S K, Kulshreshtha A, Hallan V, Pande SS (2013) Molecular identification of Ageratum enation virus, betasatellite and alphasatellite molecules isolated from yellow vein diseased Amaranthus cruentus in India. Virus Genes 47:584–590Google Scholar
  86. Srivastava A, Kumar S, Raj S K (2014) First report of Ageratum enation virus, betasatellite and alphasatellite causing leaf curl and enation disease of Amaranthus hypochondriacus in India. Plant Disease 98:1285Google Scholar
  87. Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 301–326Google Scholar
  88. Valand GB, Muniyappa V (1992) Epidemiology of Tobacco leaf curl virus in India. Ann Appl Biol 120:257–267CrossRefGoogle Scholar
  89. Valkonen J (1998) Virus disease control in plants using natural and engineered resistance and some consideration regarding biosafety. Currents 17:51–55Google Scholar
  90. Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P (2007) Engineering resistance to geminiviruses review and perspectives. Plant Biotechnol J 5:207–220CrossRefPubMedGoogle Scholar
  91. Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272CrossRefPubMedGoogle Scholar
  92. Varma A (1997) Application of biotechnology in plant pest management: current status and future prospects. In: Proceedings of regional expert consultation on application of biotechnology in plant pest management. FAO, RAP publication, Bangkok, pp 21–66Google Scholar
  93. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–146CrossRefGoogle Scholar
  94. Varma A, Jain RK, Bhat AI (2002) Virus resistant transgenic plants for environmentally safe management of viral diseases. Indian J Biotechnol 1:73–86Google Scholar
  95. Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Murilo Zerbini F, Martin DP (2017) Capulavirus and grablovirus: two new genera in the family Geminiviridae. Arch Virol 162:1819–1831Google Scholar
  96. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, Edwards JD, Bai Y (2013) The Tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9:e1003399CrossRefPubMedPubMedCentralGoogle Scholar
  97. Verma HN, Awasthi LP (1980) Can J Bot 58:2141–2144CrossRefGoogle Scholar
  98. Waterworth P, Kahn RP (1978) Thermotherapy and aseptic bud culture of sugarcane to facilitate the exchange of germ plasm and passage through quarantine. Plant Dis Rep 62:72–776Google Scholar
  99. Ye J, Qu J, Mao HZ, Ma ZG, Rahman NEB, Bai C, Chen W, Jiang SY, Ramachandran S, Chua NH (2014) Engineering geminivirus resistance in Jatropha curcas. Biotechnol Biofuels 7:149CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zaidi SSA, Tashkandi M, Mansoor S, Mahfouz MM (2016) Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci 7:1673CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146CrossRefPubMedGoogle Scholar
  102. Zhang P, Gruissem W (2003) Efficient replication of cloned African cassava mosaic virus in cassava leaf disks. Virus Res 92:47–54CrossRefPubMedGoogle Scholar
  103. Zhang W, Olson NH, Baker TS, Faulkner L, McKenna MA, Boulton MI, Davies JW, McKenna R (2001) Structure of the maize streak virus geminate particle. Virology 279:471–477CrossRefPubMedGoogle Scholar
  104. Zhuk IP, Rassokha SN (1992) Regeneration and selection of somatic clones of tomato for resistance to TMV. Ross Akad Sel’skokhozyaistvennykh Nauk 11/12:18–21Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Susheel Kumar
    • 1
  • Ashish Srivastava
    • 1
    • 2
  • Aarti Kumari
    • 1
  • Rashmi Raj
    • 1
  • Meraj Jaidi
    • 1
  • S. K. Raj
    • 1
  1. 1.Plant Molecular Virology LaboratoryCouncil of Scientific and Industrial Research-National Botanical Research InstituteLucknowIndia
  2. 2.Amity Institute of Virology and ImmunologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations