Skip to main content

Centella asiatica, an Ayurvedic Medicinal Plant, Prevents the Major Neurodegenerative and Neurotoxic Mechanisms Associated with Cognitive Impairment

  • Chapter
  • First Online:

Part of the book series: Medicinal and Aromatic Plants of the World ((MAPW,volume 4))

Abstract

Ayurveda is one of the ancient traditional healthcare systems that originated in India. A number of herbal-based medicinal preparations have been used for the treatment of health disorders associated with the nervous system. According to Alzheimer’s disease Facts and Figures, millions of people around the world are suffering with cognitive impairment. Cognitive ailments and diseases are a group of disorders associated with mental health. The cognitive disorders mainly comprise of acute and chronic or reversible or irreversible conditions such as amnesia, delirium, and various types of dementia. These disorders primarily cause deficits in cognitive tasks associated with awareness, insight, knowledge, memory, and problem-solving skills. Alzheimer’s disease is the most common type of dementia. It is a chronic neurodegenerative disorder that occurs due to excessive protein deposition inside and outside the neuron, oxidative stress, apoptosis, mitochondrial dysfunction, inflammation, and excitotoxicity. These neurotoxic mechanisms cause synaptic disturbance, alteration of neurotransmission leading to neurodegeneration. Centella asiatica is a well-known medicinal herb used in Ayurveda to improve cognitive functions since ancient times. In this article, we review the therapeutic potential of Centella asiatica in relation to its neuroprotective properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

15-LOX:

15- Lipoxygenase

3-NPA:

3-Nitropropionic acid

5-HT:

Serotonin

Ach:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

ADDLs:

Aβ-derived diffusible ligands

AICD:

APP intracellular domain

AMPARs:

2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propionic acid receptors

APH-1:

Anterior pharynx-defective 1

APP:

Amyloid β precursor protein

ATP:

Adenosine triphosphate

Aβ:

Amyloid beta

BACE:

Beta-site APP-cleaving enzyme

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

C83:

Carboxyl-terminal 83-aa fragment

Ca2+ :

Calcium

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

COX-2:

Cyclooxygenase 2

CREB:

Cyclic adenosine monophosphate response element-binding protein

CTLs:

T-cell lymphocytes

FAD:

Familial Alzheimer’s disease

GABA:

Gamma-aminobutyric acid

GAD:

Glutamate decarboxylase enzyme

GLT:

Glutamate transporter

IFN:

Interferon

IL:

Interleukin

iPLA2 :

Ca2+-independent phospholipase A2

LTP:

Long-term potentiation

MAPK:

Mitogen-activated protein kinase

mGluRs:

Metabotropic glutamate receptors

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NADPH:

Nicotinamide adenine dinucleotide phosphate oxidase

NE:

Norepinephrine

NFTs:

The neurofibrillary tangles

NMDARs:

N-Methyl-D-aspartate receptors

NO:

Nitric oxide

NSAIDs:

Nonsteroidal anti-inflammatory drugs

O2− :

Superoxide radical

PEN-1:

Presenilin 1

PEN-2:

Presenilin 2

PKA:

Protein kinase A

PLA2 :

Phospholipase A2

PS:

Presenilin

SAD:

Sporadic Alzheimer’s disease

SPs:

Senile plaques

TNF:

Tumor necrosis factors

β-CTF:

Carboxyl-terminal 99-aa fragment

References

  • Abas R, Othman F, Thent ZC (2015) Effect of Momordica charantia fruit extract on vascular complication in type 1 diabetic rats. EXCLI J 14:179–189. doi:10.17179/excli2014-539

    PubMed  PubMed Central  Google Scholar 

  • Abdul HM, Sultana R, St Clair DK, Markesbery WR, Butterfield DA (2008) Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radic Biol Med 45:1420–1425. doi:10.1016/j.freeradbiomed.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta D, Wortmann M (2009) World Alzheimer Report

    Google Scholar 

  • Aisen PS, Vellas B (2013) Passive immunotherapy for Alzheimer’s disease: what have we learned, and where are we headed? J Nutr Health Aging 17:49–50. doi:10.1007/s12603-013-0001-3

    Article  CAS  PubMed  Google Scholar 

  • Akagi M, Matsui N, Akae H, Hirashima N, Fukuishi N, Fukuyama Y, Akagi R (2015) Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer’s disease. J Pharmacol Sci 127:155–163. doi:10.1016/j.jphs.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    Article  CAS  PubMed  Google Scholar 

  • Alvari A, Mehrnaz SOR, Ahmad FJ, Abdin MZ (2012) Contemporary overview on clinical trials and future prospects of hepato-protective herbal medicines. Rev Recent Clin Trials 7:214–223

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11:332–84

    Google Scholar 

  • Alzheimer’s disease International (2009) Alzheimer’s Disease International Report 2009. London

    Google Scholar 

  • Appa Rao MV, Srinivasan K, Rao KT (1973) Effect of Man-dookaparni (Centella asiatica) on the general mental ability (Medhya) of mentally retarded children. J Res Indian Med 8:9–16

    Google Scholar 

  • Arboleda G, Morales LC, Benítez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59:333–346. doi:10.1016/j.brainresrev.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Ashalatha M, Shenoy LN (2015) Preliminary pharmacognostic study of Brahmi. Internat Ayurvedic Med J 3:2465–2469

    Google Scholar 

  • Atri A (2011) Effective pharmacological management of Alzheimer’s disease. Am J Manag Care 17(Suppl 1):S346–S355

    PubMed  Google Scholar 

  • Awang D (1998) Gotu kola. Can Pharm J 7:42–46

    Google Scholar 

  • Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, Piccardo P, Ghetti B, Paul SM (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17:263–264

    Article  CAS  PubMed  Google Scholar 

  • Barbosa NR, Pittella F, Gattaz WF (2008) Centella asiatica water extract inhibits iPLA2 and cPLA2 activities in rat cerebellum. Phytomedicine 15:896–900. doi:10.1016/j.phymed.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  • Barzilai A, Yamamoto K-I (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115. doi:10.1016/j.dnarep.2004.03.002

    Article  CAS  Google Scholar 

  • Belcaro G, Maquart F-X, Scoccianti M, Dugall M, Hosoi M, Cesarone MR, Luzzi R, Cornelli U, Ledda A, Feragalli B (2011) TECA (Titrated Extract of Centella Asiatica): new microcirculatory, biomolecular, and vascular application in preventive and clinical medicine. A status paper. Panminerva Med 53:105–118

    CAS  PubMed  Google Scholar 

  • Bhattachryya SC, Lythgoe B (1949) Triterpene acids. Nature 163:259

    Article  Google Scholar 

  • Bhavna D, Jyoti K (2011) Centella asiatica: the elixir of life. IJRAP 2:431–438

    Google Scholar 

  • Bian G-X, Li G-G, Yang Y, Liu R-T, Ren J-P, Wen L-Q, Guo S-M, Lu Q-J (2008) Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat. Biol Pharm Bull 31:458–463

    Article  CAS  PubMed  Google Scholar 

  • Bian D, Zhang J, Wu X, Dou Y, Yang Y, Tan Q, Xia Y, Gong Z, Dai Y (2013) Asiatic acid isolated from Centella asiatica inhibits TGF-β1-induced collagen expression in human keloid fibroblasts via PPAR-γ activation. Int J Biol Sci 9:1032–1042. doi:10.7150/ijbs.7273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianca VD, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999) beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 274:15493–15499

    Article  CAS  PubMed  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760

    Article  CAS  PubMed  Google Scholar 

  • Binienda Z, Simmons C, Hussain S, Slikker W, Ali SF (1998) Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain. Neurosci Lett 251:173–176

    Article  CAS  PubMed  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178. doi:10.1073/pnas.0308512100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 13:63–68

    CAS  PubMed  Google Scholar 

  • Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B (2004) How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3:169–176. doi:10.1111/j.1474-9728.2004.00101.x

    Article  CAS  PubMed  Google Scholar 

  • Bobade V, Bodhankar SL, Aswar U, Mohan V, Thakurdesai P (2015) Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica ( L.) urban leaves on experimental migraine: involvement of 5HT1A/1B receptors. Chin J Nat Med 13:274–282. doi:10.1016/S1875-5364(15)30014-5

    CAS  PubMed  Google Scholar 

  • Boland B, Campbell V (2004) Abeta-mediated activation of the apoptotic cascade in cultured cortical neurones: a role for cathepsin-L. Neurobiol Aging 25:83–91

    Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    Article  CAS  PubMed  Google Scholar 

  • Bradwejn J, Zhou Y, Koszycki D, Shlik J (2000) A double-blind, placebo-controlled study on the effects of Gotu Kola (Centella asiatica) on acoustic startle response in healthy subjects. J Clin Psychopharmacol 20:680–684

    Article  CAS  PubMed  Google Scholar 

  • Bras J, Singleton A, Cookson MR, Hardy J (2008) Emerging pathways in genetic Parkinson’s disease: potential role of ceramide metabolism in Lewy body disease. FEBS J 275:5767–5773. doi:10.1111/j.1742-4658.2008.06709.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitner JC (1996) APOE genotyping and Alzheimer’s disease. Lancet (London, England) 347:1184–1185

    Article  CAS  Google Scholar 

  • Breitner JC, Welsh KA (1995) Diagnosis and management of memory loss and cognitive disorders among elderly persons. Psychiatr Serv 46:29–35. doi:10.1176/ps.46.1.29

    Article  CAS  PubMed  Google Scholar 

  • Brinkhaus B, Lindner M, Schuppan D, Hahn EG (2000) Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 7:427–448

    Article  CAS  PubMed  Google Scholar 

  • Brown D (1995) Encyclopedia of herbs and their uses. Doring Kindersley, Boston

    Google Scholar 

  • Burnett BP, Bitto A, Altavilla D, Squadrito F, Levy RM, Pillai L (2011) Flavocoxid inhibits phospholipase A2, peroxidase moieties of the cyclooxygenases (COX), and 5-lipoxygenase, modifies COX-2 gene expression, and acts as an antioxidant. Mediat Inflamm 2011:385780. doi:10.1155/2011/385780

    Article  CAS  Google Scholar 

  • Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17:641–652

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7:548–554

    Article  CAS  PubMed  Google Scholar 

  • Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes 61:1234–1242. doi:10.2337/db11-1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546. doi:10.1016/j.disamonth.2010.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo GM, Lukito W, Peskind E, Raskind M, Kirschner DA, Yee AG, Snow AD (2000) Laminin inhibition of beta-amyloid protein (Abeta) fibrillogenesis and identification of an Abeta binding site localized to the globular domain repeats on the laminin a chain. J Neurosci Res 62:451–462

    Article  CAS  PubMed  Google Scholar 

  • Cataldi A, Gasbarro V, Viaggi R, Soverini R, Gresta E, Mascoli F (2001) Effectiveness of the combination of alpha tocopherol, rutin, melilotus, and Centella asiatica in the treatment of patients with chronic venous insufficiency. Minerva Cardioangiol 49:159–163

    CAS  PubMed  Google Scholar 

  • Cesarone MR, Incandela L, De Sanctis MT, Belcaro G, Bavera P, Bucci M, Ippolito E (2001a) Evaluation of treatment of diabetic microangiopathy with total triterpenic fraction of Centella asiatica: a clinical prospective randomized trial with a microcirculatory model. Angiology 52(Suppl 2):S49–S54

    Google Scholar 

  • Cesarone MR, Incandela L, De Sanctis MT, Belcaro G, Geroulakos G, Griffin M, Lennox A, Di Renzo AD, Cacchio M, Bucci M (2001b) Flight microangiopathy in medium- to long-distance flights: prevention of edema and microcirculation alterations with total triterpenic fraction of Centella asiatica. Angiology 52(Suppl 2):S33–S37

    PubMed  Google Scholar 

  • Chami L, Checler F (2012) BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and beta-amyloid production in Alzheimer’s disease. Mol Neurodegener 7:52. doi:10.1186/1750-1326-7-52

  • Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J Neurosci Res 60:65–72

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Han T, Rui Y, Yin M, Qin L, Zheng H (2005) Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai 28:492–496

    PubMed  Google Scholar 

  • Chen J, Wang X, Yi X, Wang Y, Liu Q, Ge R (2013) Induction of KLF4 contributes to the neurotoxicity of MPP + in M17 cells: a new implication in Parkinson’s disease. J Mol Neurosci 51:109–117. doi:10.1007/s12031-013-9961-3

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yin Z, Jiang C, Ma Z, Fu Q, Qu R, Ma S (2014) Pharmacology, biochemistry and behavior Asiaticoside attenuates memory impairment induced by transient cerebral ischemia – reperfusion in mice through anti-inflammatory mechanism. Pharmacol Biochem Behav 122:7–15. doi:10.1016/j.pbb.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Tsai WH, Chen CJ, Pan TM (2015) Centella asiatica extract protects against amyloid??<inf>1–40</inf>−induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J Tradit Complement Med 1–8. doi: 10.1016/j.jtcme.2015.07.002

  • Chiu MJ, Yang SY, Chen TF, Chieh JJ, Huang TZ, Yip PK, Yang HC, Cheng TW, Chen YF, Hua MS, Horng HE (2012) New assay for old markers-plasma beta amyloid of mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res 9:1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee JY, Chung CP, Park YJ (2012) Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. Int J Nanomedicine 7:5091–5106. doi:10.2147/IJN.S31723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong Y (1997) Effect of a carboxy-terminal fragment of the Alzheimer’s amyloid precursor protein on expression of proinflammatory cytokines in rat glial cells. Life Sci 61:2323–2333

    Article  CAS  PubMed  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:672–674. doi:10.1038/360672a0

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Vinters HV, Cole GM, Khachaturian ZS (1998) Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51:S2–17. discussion S65–7

    Article  CAS  PubMed  Google Scholar 

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075. doi:10.1073/pnas.0305799101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sanctis MT, Belcaro G, Incandela L, Cesarone MR, Griffin M, Ippolito E, Cacchio M (2001) Treatment of edema and increased capillary filtration in venous hypertension with total triterpenic fraction of Centella asiatica: a clinical, prospective, placebo-controlled, randomized, dose-ranging trial. Angiology 52(Suppl 2):S55–S59

    PubMed  Google Scholar 

  • Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA (2010) Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci 30:9166–9171. doi:10.1523/JNEUROSCI.1074-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Defillipo PP, Raposo AH, Fedoce AG, Ferreira AS, Polonini HC, Gattaz WF, Raposo NRB (2012) Inhibition of cPLA2 and sPLA2 activities in primary cultures of rat cortical neurons by Centella asiatica water extract. Nat Prod Commun 7:841–843

    CAS  PubMed  Google Scholar 

  • Del Bo R, Angeretti N, Lucca E, De Simoni MG, Forloni G (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neurosci Lett 188:70–74

    Article  PubMed  Google Scholar 

  • Dewachter I, Filipkowski RK, Priller C, Ris L, Neyton J, Croes S, Terwel D, Gysemans M, Devijver H, Borghgraef P, Godaux E, Kaczmarek L, Herms J, Van Leuven F (2009) Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice. Neurobiol Aging 30:241–256. doi:10.1016/j.neurobiolaging.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, Manyam BV (2009) Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer’s disease animal model. Phytother Res 23:14–19. doi:10.1002/ptr.2405

    Article  PubMed  Google Scholar 

  • Di Tomo P, Di Silvestre S, Cordone VGP, Giardinelli A, Faricelli B, Pipino C, Lanuti P, Peng T, Formoso G, Yang D, Arduini A, Chiarelli F, Pandolfi A, Di Pietro N (2015) Centella asiatica and lipoic acid, or a combination thereof, inhibit monocyte adhesion to endothelial cells from umbilical cords of gestational diabetic women. Nutr Metab Cardiovasc Dis 25:659–666. doi:10.1016/j.numecd.2015.04.002

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM (1997) Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci U S A 94:5296–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du B, Zhang Z, Li N (2014) Madecassoside prevents Aβ25-35-induced inflammatory responses and autophagy in neuronal cells through the class III PI3K/Beclin-1/Bcl-2 pathway. Int Immunopharmacol 20:221–228. doi:10.1016/j.intimp.2014.02.036

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom P, van Exel E, Hoozemans JJM, Veerhuis R, Rozemuller AJM, van Gool WA (2010) Neuroinflammation – an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 7:38–41. doi:10.1159/000283480

    Article  CAS  PubMed  Google Scholar 

  • Emilien G, Beyreuther K, Masters CL, Maloteaux JM (2000) Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 57:454–459

    Article  CAS  PubMed  Google Scholar 

  • Engelborghs S, De Deyn PP (1997) The neurochemistry of Alzheimer’s disease. Acta Neurol Belg 97:67–84

    CAS  PubMed  Google Scholar 

  • Ermertcan AT, Inan S, Ozturkcan S, Bilac C, Cilaker S (2008) Comparison of the effects of collagenase and extract of Centella asiatica in an experimental model of wound healing: an immunohistochemical and histopathological study. Wound Repair Regen 16:674–681. doi:10.1111/j.1524-475X.2008.00417.x

    Article  PubMed  Google Scholar 

  • Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 203:829–836. doi:10.1148/radiology.203.3.9169712

    Article  CAS  PubMed  Google Scholar 

  • Farlow MR (1998) Etiology and pathogenesis of Alzheimer’s disease. Am J Health Syst Pharm 55(Suppl 2):S5–10

    CAS  PubMed  Google Scholar 

  • Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study. Am J Alzheimers Dis Other Demen 26:450–456. doi:10.1177/1533317511421780

    Article  PubMed  Google Scholar 

  • Feng Z, Chang Y, Cheng Y, Zhang B, Qu Z, Qin C, Zhang J (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 37:129–136. doi:10.1111/j.1600-079X.2004.00144.x

    Article  CAS  PubMed  Google Scholar 

  • Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51:95–106. doi:10.1016/j.ceca.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  • Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 129:318–320

    Article  CAS  PubMed  Google Scholar 

  • Fisher Y, Nemirovsky A, Baron R, Monsonego A (2011) Dendritic cells regulate amyloid-β-specific T-cell entry into the brain: the role of perivascular amyloid-β. J Alzheimers Dis 27:99–111. doi:10.3233/JAD-2011-102034

    CAS  PubMed  Google Scholar 

  • France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M (1997) Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 69:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol 41:392–409. doi:10.1007/s12035-010-8137-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George V, Gnanarethinam J (1975) Free amino acids in Centella asiatica. Curr Sci 44:790

    Google Scholar 

  • Gohil KJ, Patel JA, Gajjar AK (2010) Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci 72:546–556. doi:10.4103/0250-474X.78519

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Isla T, Price JL, McKeel DWJ, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    CAS  PubMed  Google Scholar 

  • Gottwald MD, Rozanski RI (1999) Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: review and current status. Expert Opin Investig Drugs 8:1673–1682. doi:10.1517/13543784.8.10.1673

    Article  CAS  PubMed  Google Scholar 

  • Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F (2004) Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9:664–683. doi:10.1038/sj.mp.4001508

    CAS  PubMed  Google Scholar 

  • Gray NE, Sampath H, Zweig JA, Quinn JF, Soumyanath A (2015) Centella asiatica attenuates amyloid-β-induced oxidative stress and mitochondrial dysfunction. J Alzheimers Dis 45:933–946. doi:10.3233/JAD-142217.Centella

    PubMed  PubMed Central  Google Scholar 

  • Gray NE, Harris CJ, Quinn JF, Soumyanath A (2016) Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J Ethnopharmacol 180:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Pansari K (2003) Inflammation and Alzheimer’s disease. Int J Clin Pract 57:36–39

    CAS  PubMed  Google Scholar 

  • Gupta YK, Veerendra Kumar MH, Srivastava AK (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74:579–585

    Article  CAS  PubMed  Google Scholar 

  • Hage S, Kienlen-campard P, Octave J, Quetin-leclercq J (2010) In vitro screening on β -amyloid peptide production of plants used in traditional medicine for cognitive disorders. J Ethnopharmacol 131:585–591. doi:10.1016/j.jep.2010.07.044

    Article  CAS  PubMed  Google Scholar 

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    Article  CAS  PubMed  Google Scholar 

  • Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29:177–185

    Article  CAS  PubMed  Google Scholar 

  • Holcomb LA, Gordon MN, Benkovic SA, Morgan DG (2000) A beta and perlecan in rat brain: glial activation, gradual clearance and limited neurotoxicity. Mech Ageing Dev 112:135–152

    Article  CAS  PubMed  Google Scholar 

  • Hong-Qi Y, Zhi-Kun S, Sheng-Di C (2012) Current advances in the treatment of Alzheimer’s disease: focused on considerations targeting Aβ and tau. Transl Neurodegener 1:21. doi:10.1186/2047-9158-1-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoozemans JJM, Veerhuis R, Rozemuller AJM, Arendt T, Eikelenboom P (2004) Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis 15:492–499. doi:10.1016/j.nbd.2003.11.028

    Article  CAS  PubMed  Google Scholar 

  • Howes MR, Houghton PJ (2003) Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 75:513–527. doi:10.1016/S0091-3057(03)00128-X

    Article  CAS  PubMed  Google Scholar 

  • Howes M-J R, Houghton PJ (2012) Ethnobotanical treatment strategies against Alzheimer’s disease. Curr Alzheimer Res 9:67–85. doi:10.2174/156720512799015046

    Article  PubMed  Google Scholar 

  • Howes M-JR, Perry NSL, Houghton PJ (2003) Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res 17:1–18. doi:10.1002/ptr.1280

    Article  CAS  PubMed  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843. doi:10.1016/j.neuron.2006.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ (1998) Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res 785:195–206

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642. doi:10.1146/annurev.biochem.72.121801.161629

    Article  CAS  PubMed  Google Scholar 

  • Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CRW (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24:1023–1034. doi:10.1096/fj.09-141978

    Article  CAS  PubMed  Google Scholar 

  • Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, Trojanowski JQ, Lee VM-Y (2010) A{beta} accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177:1977–1988. doi:10.2353/ajpath.2010.100346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussin N, Jaafar J, Naing NN, Mat HA, Muhamad AH, Mamat MN (2005) A review of dengue fever incidence in Kota Bharu, Kelantan, Malaysia during the years 1998–2003. SE Asian J Trop Med Public Health 36:1179–1186

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR (1987) Alzheimer’s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22:37–40. doi:10.1002/ana.410220110

    Article  CAS  PubMed  Google Scholar 

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T, Wanaka A, Takeda M, Tohyama M (1999) The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J Biol Chem 274:7975–7981

    Article  CAS  PubMed  Google Scholar 

  • Imbimbo BP, Lombard J, Pomara N (2005) Pathophysiology of Alzheimer’s disease. Neuroimaging Clin N Am 15:727–753., ix. doi:10.1016/j.nic.2005.09.009

    Article  PubMed  Google Scholar 

  • Incandela L, Belcaro G, Cesarone MR, De Sanctis MT, Nargi E, Patricelli P, Bucci M (2001) Treatment of diabetic microangiopathy and edema with total triterpenic fraction of Centella asiatica: a prospective, placebo-controlled randomized study. Angiology 52(Suppl 2):S27–S31

    PubMed  Google Scholar 

  • Iqbal H, Sher Z, Khan ZU (2011) Medicinal plants from salt range Pind Dadan Khan, district Jhelum, Punjab, Pakistan. J Med Plant Res 5:2157–2168

    Google Scholar 

  • Itagaki S, McGeer PL, Akiyama H (1988) Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci Lett 91:259–264

    Article  CAS  PubMed  Google Scholar 

  • Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24:173–182

    Article  CAS  PubMed  Google Scholar 

  • Ittiyavirah SP, Hameed J (2014) Herbs treating Parkinson’s disease. Biomed Aging Pathol 4:369–376. doi:10.1016/j.biomag.2014.08.003

    Article  Google Scholar 

  • Jadidi-Niaragh F, Shegarfi H, Naddafi F, Mirshafiey A (2012) The role of natural killer cells in Alzheimer’s disease. Scand J Immunol 76:451–456. doi:10.1111/j.1365-3083.2012.02769.x

    Article  CAS  PubMed  Google Scholar 

  • James JT, Dubery IA (2009) Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L) Urban. Molecules 14:3922–3941. doi:10.3390/molecules14103922

    Article  CAS  PubMed  Google Scholar 

  • Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278:5–15. doi:10.1016/j.jns.2008.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaturapatporn D, Isaac MGEKN, McCleery J, Tabet N (2012) Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev 2:CD006378. doi:10.1002/14651858.CD006378.pub2

    Google Scholar 

  • Jayathirtha MG, Mishra SH (2004) Preliminary immunomodulatory activities of methanol extracts of Eclipta alba and Centella asiatica. Phytomedicine 11:361–365

    Article  CAS  PubMed  Google Scholar 

  • Kalshetty P, Aswar U, Bodhankar S, Sinnathambi A, Mohan V (2012) Antidepressant effects of standardized extract of Centella asiatica L in olfactory bulbectomy model. Biomed Aging Pathol 2:48–53. doi:10.1016/j.biomag.2012.03.005

    Article  CAS  Google Scholar 

  • Karantzoulis S, Galvin JE (2011) Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother 11:1579–1591. doi:10.1586/ern.11.155

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpińska A, Gromadzka G (2013) Oxidative stress and natural antioxidant mechanisms: the role in neurodegeneration. From molecular mechanisms to therapeutic strategies. Postepy Hig Med Dosw (Online) 67:43–53

    Article  Google Scholar 

  • Kasture VS, Gosavi SA, Ajage RK, Deshpande SG (2014) Comparative study of Brahmi and Brhamanduki: a review. World J Pharm Pharm Sci 3:2217–2230

    Google Scholar 

  • Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Khatun MA, Harun-Or-Rashid M, Rahmatullah M (2011) Scientific validation of eight medicinal plants used in traditional medicinal systems of Malaysia: a review. Am J Sustain Agric 5:67–75

    Google Scholar 

  • Khotimah H, Ali M, Sumitro SB, Widodo MA (2015) Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson’s model. Asian Pac J Trop Biomed 5:948–954. doi:10.1016/j.apjtb.2015.07.024

    Article  Google Scholar 

  • Kolko M, Nielsen M, Bazan NG, Diemer NH (2002) Secretory phospholipase A(2) induces delayed neuronal COX-2 expression compared with glutamate. J Neurosci Res 69:169–177. doi:10.1002/jnr.10288

    Article  CAS  PubMed  Google Scholar 

  • Krishna G (2013) Neurodegenerative disorders: combining novelty with an ancient science – a review. IAJPR 3(10):8480–8486

    Google Scholar 

  • Krishnamurthy RG, Senut M-C, Zemke D, Min J, Frenkel MB, Greenberg EJ, Yu S-W, Ahn N, Goudreau J, Kassab M, Panickar KS, Majid A (2009) Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J Neurosci Res 87:2541–2550. doi:10.1002/jnr.22071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519. doi:10.1038/74994

    Article  CAS  PubMed  Google Scholar 

  • Kudo W, Lee H-P, Smith MA, Zhu X, Matsuyama S, Lee H-G (2012) Inhibition of Bax protects neuronal cells from oligomeric Abeta neurotoxicity. Cell Death Dis 3:e309. doi:10.1038/cddis.2012.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MHV, Gupta YK (2002) Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol 79:253–260

    Article  Google Scholar 

  • Kumar MH, Gupta YK (2003) Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 30:336–342

    Article  CAS  Google Scholar 

  • Kumar A, Dogra S, Prakash A (2009) Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis. doi:10.4061/2009/972178

  • Kumar A, Prakash A, Dogra S (2011) Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int J Alzheimers Dis 2011:347569. doi:10.4061/2011/347569

    PubMed  PubMed Central  Google Scholar 

  • Kumar H, More SV, Han S-D, Choi J-Y, Choi D-K (2012) Promising therapeutics with natural bioactive compounds for improving learning and memory – a review of randomized trials. Molecules 17:10503–10539. doi:10.3390/molecules170910503

    Article  CAS  PubMed  Google Scholar 

  • Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C (2005) Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol 167:527–543. doi:10.1016/S0002-9440(10)62995-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Label L (2009) Dementia facts and statistics. Disabled world towards tomorrow. https://www.disabled-world.com/health/aging/dementia/statistics.php

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200. doi:10.1523/JNEUROSCI.3432-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807. doi:10.1523/JNEUROSCI.3501-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132. doi:10.1038/nature07761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LeBlanc AC (2005) The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr Alzheimer Res 2:389–402

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Kim SR, Sung SH, Lim D, Kim H, Choi H, Park HK, Je S, Ki YC (2000) Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity. Res Commun Mol Pathol Pharmacol 108:75–86

    CAS  PubMed  Google Scholar 

  • Lee J, Jung E, Kim Y, Park J, Park J, Hong S, Kim J, Hyun C, Kim YS, Park D (2006) Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent Smad signaling. Planta Med 72:324–328. doi:10.1055/s-2005-916227

    Article  CAS  PubMed  Google Scholar 

  • Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM (2011) Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. NeuroImage 55:32–38. doi:10.1016/j.neuroimage.2010.11.073

    Article  CAS  PubMed  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491. doi:10.1126/science.1058189

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801. doi:10.1016/j.neuron.2009.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Dai Y, Yao X, Li Y, Luo Y, Xia Y, Gong Z (2008) Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int Immunopharmacol 8:1561–1566. doi:10.1016/j.intimp.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  • Lo C-J, Lin J-G, Kuo J-S, Chiang S-Y, Chen S-C, Liao E-T, Hsieh C-L (2003) Effect of salvia miltiorrhiza bunge on cerebral infarct in ischemia-reperfusion injured rats. Am J Chin Med 31:191–200. doi:10.1142/S0192415X03000916

    Article  PubMed  Google Scholar 

  • Long HS, Stander MA, Van Wyk B (2012) Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. S Afr J Bot 82:53–59. doi:10.1016/j.sajb.2012.07.017

    Article  CAS  Google Scholar 

  • Lue LF, Brachova L, Civin WH, Rogers J (1996) Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol 55:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Yang Y, Liu J, Li W, Yang J, Sui X, Yuan X, Nie Z, Liu Y, Chen D, Lin S, Wang Y (2014) Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res 1565:37–47. doi:10.1016/j.brainres.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  • Madara JC, Levine ES, 2008. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol 100, 3175–3184. doi:10.1152/jn.90880.2008

  • Magnus T, Schreiner B, Korn T, Jack C, Guo H, Antel J, Ifergan I, Chen L, Bischof F, Bar-Or A, Wiendl H (2005) Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci 25:2537–2546. doi:10.1523/JNEUROSCI.4794-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357

    Article  CAS  PubMed  Google Scholar 

  • Mangas S, Bonfill M, Osuna L, Moyano E, Tortoriello J, Cusido RM, Piñol MT, Palazón J (2006) The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry 67:2041–2049. doi:10.1016/j.phytochem.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  • Manyam BV (1999) Dementia in Ayurveda. J Altern Complement Med 5:81–88. doi:10.1089/acm.1999.5.81

    Article  CAS  PubMed  Google Scholar 

  • Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery P, Wegrowski Y (1999) Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol 9:289–296

    CAS  PubMed  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    Article  CAS  PubMed  Google Scholar 

  • Mato L, Wattanathorn J, Muchimapura S, Tongun T, Piyawatkul N, Yimtae K, Thanawirattananit P, Sripanidkulchai B (2011) Centella asiatica improves physical performance and health-related quality of life in healthy elderly volunteer. Evid Based Complement Alternat Med 2011:579467. doi:10.1093/ecam/nep177

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxwell SR (1995) Prospects for the use of antioxidant therapies. Drugs 49:345–361

    Article  CAS  PubMed  Google Scholar 

  • Mayeux R, Honig LS, Tang M-X, Manly J, Stern Y, Schupf N, Mehta PD (2003) Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 107:341–346

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47:425–432

    Article  CAS  PubMed  Google Scholar 

  • McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D, Dickson D, Duff K (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6:231–244. doi:10.1006/nbdi.1999.0243

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Fontana I, Trippi F, Colognato R, Coppedè F, Tognoni G, Nucciarone B, Siciliano G (2005) Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 26:567–573. doi:10.1016/j.neurobiolaging.2004.07.016

    Article  CAS  PubMed  Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137

    Article  CAS  PubMed  Google Scholar 

  • Misra R (1998) Modern drug development from traditional medicinal plants using radioligand receptor-binding assays. Med Res Rev 18:383–402

    Article  CAS  PubMed  Google Scholar 

  • Mohandas Rao KG, Muddanna Rao S, Gurumadhva Rao S (2006) Centella asiatica (L.) leaf extract treatment during the growth spurt period enhances hippocampal CA3 neuronal dendritic arborization in rats. Evid Based Complement Alternat Med 3:349–357. doi:10.1093/ecam/nel024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohandas Rao KG, Rao MS, Rao GS (2012) Evaluation of amygdaloid neuronal dendritic arborization enhancing effect of Centella asiatica (Linn) fresh leaf extract in adult rats. Chin J Integr Med 1–6. doi: 10.1007/s11655-012-1235-3

  • Mohd Salim RJ, Adenan MI, Amid A, Jauri MH, Sued AS (2013) Statistical analysis of metal chelating activity of Centella asiatica and Erythroxylum cuneatum using response surface methodology. Biotechnol Res Int 2013:137851. doi:10.1155/2013/137851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY, Park HK, Jew SS, Jung MW (1999) Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res 58:417–425

    Article  CAS  PubMed  Google Scholar 

  • Moore AH, O’Banion MK (2002) Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Deliv Rev 54:1627–1656

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44:1493–1505. doi:10.1016/j.freeradbiomed.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, Kakuda N, Horikoshi-Sakuraba Y, Tan J, Town T (2012) Tannic acid is a natural beta-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287:6912–6927. doi:10.1074/jbc.M111.294025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movsesyan VA, Yakovlev AG, Dabaghyan EA, Stoica BA, Faden AI (2002) Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem Biophys Res Commun 299:201–207

    Article  CAS  PubMed  Google Scholar 

  • Naik MT, Chang YC, Huang T (2002) Folding kinetics of the lipoic acid-bearing domain of human mitochondrial branched chain alpha-ketoacid dehydrogenase complex. FEBS Lett 530:133–138

    Article  CAS  PubMed  Google Scholar 

  • Nalini K, Aroor A, Rao A, Karanth K (1992) Effect of Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia 63:231–238

    Google Scholar 

  • Nasir MN, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J, 2011. Effects of asiatic acid on passive and active avoidance task in male Spraque-Dawley rats. J Ethnopharmacol 134, 203–209. doi:10.1016/j.jep.2010.12.010

  • Nieminen AL (2003) Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol 224:29–55

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM, Wurtman RJ, Growdon JH (1996) Regulation of APP processing. Potential for the therapeutical reduction of brain amyloid burden. Ann N Y Acad Sci 777:175–182

    Article  CAS  PubMed  Google Scholar 

  • Novgorodov SA, Gudz TI (2009) Ceramide and mitochondria in ischemia/reperfusion. J Cardiovasc Pharmacol 53:198–208. doi:10.1097/FJC.0b013e31819b52d5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    Article  CAS  PubMed  Google Scholar 

  • O’Barr S, Cooper NR (2000) The C5a complement activation peptide increases IL-1beta and IL-6 release from amyloid-beta primed human monocytes: implications for Alzheimer’s disease. J Neuroimmunol 109:87–94

    Article  PubMed  Google Scholar 

  • Omar NS, Zakaria ZAC, Mian TS, Ngah WZW, Mazlam M (2011) Centella asiatica modulates neuron cell survival by altering caspase-9 pathway. J Med Plant Res 5:2201–2209

    Google Scholar 

  • Orhan IE (2012) Centella asiatica (L.) urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Alternat Med. doi:10.1155/2012/946259

  • Pandey MM, Rastogi S, Rawat AKS (2013) Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013:376327. doi:10.1155/2013/376327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panossian LA, Porter VR, Valenzuela HF, Zhu X, Reback E, Masterman D, Cummings JL, Effros RB (2003) Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging 24:77–84

    Article  CAS  PubMed  Google Scholar 

  • Paocharoen V (2010) The efficacy and side effects of oral Centella asiatica extract for wound healing promotion in diabetic wound patients. J Med Assoc Thail 93(Suppl 7):S166–S170

    Google Scholar 

  • Parachikova A, Agadjanyan MG, Cribbs DH, Blurton-Jones M, Perreau V, Rogers J, Beach TG, Cotman CW (2007) Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging 28:1821–1833. doi:10.1016/j.neurobiolaging.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  • Parameshwaran K, Dhanasekaran M, Suppiramaniam V (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 210:7–13. doi:10.1016/j.expneurol.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  • Paris D, Town T, Mori T, Parker TA, Humphrey J, Mullan M (2000) Soluble beta-amyloid peptides mediate vasoactivity via activation of a pro-inflammatory pathway. Neurobiol Aging 21:183–197

    Article  CAS  PubMed  Google Scholar 

  • Patel KC, Pramanik S, Patil VC (2014) Ayurvedic approach with a prospective to treat and prevent Alzheimer’s and other cognitive diseases: a review. World J Pharm Sci 3:234–252

    Google Scholar 

  • Perry RT, Collins JS, Wiener H, Acton R, Go RC (2001) The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging 22:873–883

    Article  CAS  PubMed  Google Scholar 

  • Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed) 5:167–177

    Article  Google Scholar 

  • Prakash AK, Kumar A (2012) Ameliorative effect of Centella asiatica on memory dysfunction in D-galactose-induced senescence mice. Alzheimers Dement 7:S124. doi:10.1016/j.jalz.2011.05.325

    Article  Google Scholar 

  • Prasad KN, Hovland AR, La Rosa FG, Hovland PG (1998) Prostaglandins as putative neurotoxins in Alzheimer’s disease. Proc Soc Exp Biol Med 219:120–125

    Article  CAS  PubMed  Google Scholar 

  • Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187

    PubMed  Google Scholar 

  • Ramanathan M, Sivakumar S, Anandvijayakumar PR, Saravanababu C, Pandian PR (2007) Neuroprotective evaluation of standardized extract of Centella asiatica in monosodium glutamate treated rats. Indian J Exp Biol 45:425–431

    CAS  PubMed  Google Scholar 

  • Ransohoff RM, Kivisäkk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581. doi:10.1038/nri1130

    Article  CAS  PubMed  Google Scholar 

  • Rao SB, Chetana M, Devi PU (2005) Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol Behav 86:449–457. doi:10.1016/j.physbeh.2005.07.019

    Article  CAS  PubMed  Google Scholar 

  • Rasoanaivo P (2011) Drugs and phytomedicines in Indian ocean and Madagascar: issues in research, policy and public health. Asian Biotechnol Dev Rev 13:7–25. doi:10.13140/2.1.2631.6162

    Google Scholar 

  • Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell WJ, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103–180

    Article  CAS  PubMed  Google Scholar 

  • Reinikainen KJ, Soininen H, Riekkinen PJ (1990) Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res 27:576–586. doi:10.1002/jnr.490270419

    Article  CAS  PubMed  Google Scholar 

  • Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR (2007) Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res 1143:11–21. doi:10.1016/j.brainres.2007.01.071

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529(Pt 1):37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robichaud AJ (2006) Approaches to palliative therapies for Alzheimer’s disease. Curr Top Med Chem 6:553–568

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  CAS  PubMed  Google Scholar 

  • Rowan MJ, Klyubin I, Wang Q, Anwyl R (2004) Mechanisms of the inhibitory effects of amyloid beta-protein on synaptic plasticity. Exp Gerontol 39:1661–1667. doi:10.1016/j.exger.2004.06.020

    Article  CAS  PubMed  Google Scholar 

  • Rozemuller JM, Eikelenboom P, Pals ST, Stam FC (1989) Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett 101:288–292

    Article  CAS  PubMed  Google Scholar 

  • Rozemuller AJM, van Gool WA, Eikelenboom P (2005) The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer’s disease: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4:223–233

    Article  CAS  PubMed  Google Scholar 

  • Sakina MR, Dandiya PC (1990) A psycho-neuropharmacological profile of Centella asiatica extract. Fitoterapia 61:291–296

    Google Scholar 

  • Sarkar P, Lohith KDH, Dhumal C, Panigrahi SS, Choudhary R (2015) Traditional and ayurvedic foods of Indian origin. J Ethn Foods 2:97–109. doi:10.1016/j.jef.2015.08.003

    Article  Google Scholar 

  • Schallier A, Smolders I, Van Dam D, Loyens E, De Deyn PP, Michotte A, Michotte Y, Massie A (2011) Region- and age-specific changes in glutamate transport in the AbetaPP23 mouse model for Alzheimer’s disease. J Alzheimers Dis 24:287–300. doi:10.3233/JAD-2011-101005

    CAS  PubMed  Google Scholar 

  • Schapira AH, Reichmann H (1995) Electron transport chain defects in Alzheimer’s disease. Neurology 45:599–600

    Article  CAS  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508. doi:10.1212/01.wnl.0000260698.46517.8f

    Article  CAS  PubMed  Google Scholar 

  • Schwab C, Yu S, Wong W, McGeer EG, McGeer PL (2013) GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimers Dis 33:1073–1088. doi:10.3233/JAD-2012-121330

    CAS  PubMed  Google Scholar 

  • Seevaratnam V (2012) Functional properties of Centella asiatica (L.): a review. Int J Pharm Pharm Sci 4:8–14

    Google Scholar 

  • Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8:447–453

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Chaudhary AK (2015) Ayurvedic pharmacology and herbal medicine. IJGP 9:192–198

    CAS  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355. doi:10.1016/j.neuint.2007.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinomol GK, Muralidhara (2008a) Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. Neurotoxicology 29:948–957. doi:10.1016/j.neuro.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  • Shinomol GK, Muralidhara à (2008b) Effect of Centella asiatica leaf powder on oxidative markers in brain regions of prepubertal mice in vivo and its in vitro efficacy to ameliorate 3-NPA-induced oxidative stress in mitochondria. Phytomedicine 15:971–984. doi:10.1016/j.phymed.2008.04.010

    Article  PubMed  Google Scholar 

  • Shinomol GK, Muralidhara, MMS B (2011) Exploring the role of & Brahmi (Bocopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat Endocr Metab Immune Drug Discov 5:33–49. doi:10.2174/187221411794351833

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Rasik AM, Jain GK, Shankar R, Kulshrestha DK, Dhawan BN (1999) In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J Ethnopharmacol 65:1–11

    Article  CAS  PubMed  Google Scholar 

  • Siddique YH, Naz F, Jyoti S, Fatima A, Khanam S, Rahul AF, Mujtaba SF, Faisal M (2014) Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Parkinsons Dis 2014:1–11. doi:10.1155/2014/262058

    Article  Google Scholar 

  • Siegel SJ, Bieschke J, Powers ET, Kelly JW (2007) The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry 46:1503–1510. doi:10.1021/bi061853s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Rastogi RP (1969) A reinvestigation of the triterpenes of Centella asiatica. Phytochemistry 8:917–921. doi:10.1016/S0031-9422(00)85884-7

    Article  CAS  Google Scholar 

  • Singh RH, Narsimhamurthy K, Singh G (2008) Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology 9:369–374. doi:10.1007/s10522-008-9185-z

    Article  PubMed  Google Scholar 

  • Sirichoat A, Chaijaroonkhanarak W, Prachaney P, Pannangrong W, Leksomboon R, Chaichun A, Wigmore P, Welbat J (2015) Effects of asiatic acid on spatial working memory and cell proliferation in the adult rat hippocampus. Forum Nutr 7:8413–8423. doi:10.3390/nu7105401

    CAS  Google Scholar 

  • Snow AD, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Schreier WA, Morgan DG (1994) An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 12:219–234

    Article  CAS  PubMed  Google Scholar 

  • Solanki I, Parihar P, Parihar MS (2015) Neurochemistry international neurodegenerative diseases: from available treatments to prospective herbal therapy. Neurochem Int 95:100–108. doi:10.1016/j.neuint.2015.11.001

    Article  PubMed  CAS  Google Scholar 

  • Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH (2012) Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement Altern Med 12:103. doi:10.1186/1472-6882-12-103

    Article  PubMed  PubMed Central  Google Scholar 

  • Soumyanath A, Zhong YP, Gold SA, Yu X, Koop DR, Bourdette D, Gold BG (2005) Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmacol 57:1221–1229. doi:10.1211/jpp.57.9.0018

    Article  CAS  PubMed  Google Scholar 

  • Soumyanath A, Zhong YP, Henson E, Wadsworth T, Bishop J, Gold BG, Quinn JF (2012) Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. Int J Alzheimers Dis 2012:381974. doi:10.1155/2012/381974

    PubMed  PubMed Central  Google Scholar 

  • Spiteller G (1993) Review: on the chemistry of oxidative stress. J Lipid Mediat 7:199–221

    CAS  PubMed  Google Scholar 

  • Stafford GI, Pedersen ME, Van Staden J, Jäger AK (2008) Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J Ethnopharmacol 119:513–537. doi:10.1016/j.jep.2008.08.010

    Article  PubMed  Google Scholar 

  • Stoica BA, Movsesyan VA, Knoblach SM, Faden AI (2005) Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 29:355–371. doi:10.1016/j.mcn.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  • Subathra M, Shila S, Devi MA, Panneerselvam C (2005) Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp Gerontol 40:707–715. doi:10.1016/j.exger.2005.06.001

    Article  PubMed  Google Scholar 

  • Sugunabai J, Karpagam T (2015) Analysis of functional compounds and antioxidant activity of Centella asiatica. WJPS 4:1982–1993

    CAS  Google Scholar 

  • Suh YH, Checler F (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol Rev 54:469–525

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27:918–925. doi:10.1016/j.neurobiolaging.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  • Suo Z, Tan J, Placzek A, Crawford F, Fang C, Mullan M (1998) Alzheimer’s beta-amyloid peptides induce inflammatory cascade in human vascular cells: the roles of cytokines and CD40. Brain Res 807:110–117

    Article  CAS  PubMed  Google Scholar 

  • Tabner BJ, El-Agnaf OMA, Turnbull S, German MJ, Paleologou KE, Hayashi Y, Cooper LJ, Fullwood NJ, Allsop D (2005) Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280:35789–35792. doi:10.1074/jbc.C500238200

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11. doi:10.1172/JCI11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari D, Mukhopadhyay M, Nekkanti MS, Vallabhaneni S, Sahu G, Jetti SK, Preethidan DS, Bera AK (2016) Cytoprotective effect of Centella asiatica is mediated through the modulation of mitochondrial voltage-dependent anion channel (VDAC) and scavenging of free radicals. J Funct Foods 21:301–311. doi:10.1016/j.jff.2015.11.047

    Article  CAS  Google Scholar 

  • Thellung S, Gatta E, Pellistri F, Corsaro A, Villa V, Vassalli M, Robello M, Florio T (2013) Excitotoxicity through NMDA receptors mediates cerebellar granule neuron apoptosis induced by prion protein 90-231 fragment. Neurotox Res 23:301–314. doi:10.1007/s12640-012-9340-9

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Kurup R, John A, Purushothaman S, Jacob P, Dan M, Baby S (2010) Elite genotypes/chemotypes, with high contents of madecassoside and asiaticoside, from sixty accessions of Centella asiatica of south India and the Andaman Islands: for cultivation and utility in cosmetic and herbal drug applications. Ind Crop Prod 32:545–550. doi:10.1016/j.indcrop.2010.07.003

    Article  CAS  Google Scholar 

  • Tiwari C, Bakshi M, Vichitra A (2013) A rapid two step protocol of in vitro propagation of an important medicinal herb Centella asiatica Linn. Afr J Biotechnol 12:1084–1090. doi:10.5897/AJB2012.2945

    CAS  Google Scholar 

  • Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124:83–92

    Article  CAS  PubMed  Google Scholar 

  • Vasavi HS, Arun AB, Rekha PD (2014) Anti-quorum sensing activity of flavonoid- rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect 49:8–15. doi:10.1016/j.jmii.2014.03.012

    Article  PubMed  CAS  Google Scholar 

  • Ven Murthy MR, Ranjekar PK, Ramassamy C, Deshpande M (2010) Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha. Cent Nerv Syst Agents Med Chem 10:238–246

    Article  CAS  PubMed  Google Scholar 

  • Verri M, Pastoris O, Dossena M, Aquilani R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G, Bongiorno AI (2012) Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer’s disease. Int J Immunopathol Pharmacol 25:345–353

    Article  CAS  PubMed  Google Scholar 

  • Wanakhachornkrai O, Pongrakhananon V, Chunhacha P, Wanasuntronwong A, Vattanajun A, Tantisira B, Chanvorachote P, Tantisira MH (2013) Neuritogenic effect of standardized extract of Centella asiatica ECa233 on human neuroblastoma cells. BMC Complement Altern Med 13:204. doi:10.1186/1472-6882-13-204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Song D, Berger TW (2002) Contribution of NMDA receptor channels to the expression of LTP in the hippocampal dentate gyrus. Hippocampus 12:680–688. doi:10.1002/hipo.10104

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 19:659–661. doi:10.1096/fj.04-3182fje

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Pei L, Liu C-Y, Pei Y-R, Jia X-M (2010) Effects of Tianbingtiaodu capsule on improvement of learning and memory abilities and expression of NMDAR1 of epileptic rats in the hippocampus. Zhong Yao Cai 33:947–951

    PubMed  Google Scholar 

  • Warrier P, Nambiar V, Ramankutty C (1995) Indian medicinal plants: a compendium of 500 species. Orient Longman Ltd, Madras

    Google Scholar 

  • Wattanathorn J, Mator L, Muchimapura S (2008) Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J Ethnopharmacol 116:325–332. doi:10.1016/j.jep.2007.11.038

    Article  PubMed  Google Scholar 

  • Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909. doi:10.1016/j.neuron.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  • Widgerow AD, Chait LA, Stals R, Stals PJ (2000) New innovations in scar management. Aesthet Plast Surg 24:227–234

    Article  CAS  Google Scholar 

  • Wirenfeldt M, Babcock AA, Vinters HV (2011) Microglia – insights into immune system structure, function, and reactivity in the central nervous system. Histol Histopathol 26:519–530

    PubMed  Google Scholar 

  • Won JH, Shin JS, Park HJ, Jung H-J, Koh DJ, Jo BG, Lee JY, Yun K, Lee KT (2010) Anti-inflammatory effects of madecassic acid via the suppression of NF-kappaB pathway in LPS-induced RAW 264.7 macrophage cells. Planta Med 76:251–257. doi:10.1055/s-0029-1186142

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Bian D, Xia Y, Gong Z, Tan Q, Chen J, Dai Y (2012) Identification of major active ingredients responsible for burn wound healing of Centella asiatica herbs. Evid Based Complement Alternat Med 2012:848093. doi:10.1155/2012/848093

    PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Ding H, Xu M, Gao J (2009) Protective effects of asiatic acid on rotenone- or H2O2-induced injury in SH-SY5Y cells. Neurochem Res 34:746–754. doi:10.1007/s11064-008-9844-0

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Cao Z, Khan I, Luo Y (2008) Gotu Kola (Centella Asiatica) extract enhances phosphorylation of cyclic AMP response element binding protein in neuroblastoma cells expressing amyloid beta peptide. J Alzheimers Dis 13:341–349

    Article  PubMed  Google Scholar 

  • Xu CL, Wang QZ, Sun LM, Li XM, Deng JM, Li LF, Zhang J, Xu R, Ma SP (2012a) Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 100:413–418. doi:10.1016/j.pbb.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Xiong Y, Liu J, Qian J, Zhu L, Gao J (2012b) Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin 33:578–587. doi:10.1038/aps.2012.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zainol M, Abd-Hamid A, Yusof S, Muse R (2003) Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) urban. Food Chem 81:575–581. doi:10.1016/S0308-8146(02)00498-3

    Article  CAS  Google Scholar 

  • Zhang F-L, Wei Y-J, Zhu J, Gong Z-N (2008) Simultaneous quantitation of three major triterpenoid glycosides in Centella asiatica extracts by high performance liquid chromatography with evaporative light scattering detection. Biomed Chromatogr 22:119–124. doi:10.1002/bmc.901

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Bai M, Xi Y, Hao J, Liu L, Mao N, Su C, Miao J, Li Z (2012a) Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med 52:1443–1452. doi:10.1016/j.freeradbiomed.2012.01.023

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wu J, Dou Y, Xia B, Rong W, Rimbach G, Lou Y (2012b) Asiatic acid protects primary neurons against C 2 -ceramide-induced apoptosis. Eur J Pharmacol 679:51–59. doi:10.1016/j.ejphar.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Qin L (2007) Chemical components of Centella asiatica and their bioactivities. Zhong Xi Yi Jie He Xue Bao 5:348–351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralikrishnan Dhanasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahuja, M., Patel, M., Majrashi, M., Mulabagal, V., Dhanasekaran, M. (2017). Centella asiatica, an Ayurvedic Medicinal Plant, Prevents the Major Neurodegenerative and Neurotoxic Mechanisms Associated with Cognitive Impairment. In: Agrawal, D., Tsay, HS., Shyur, LF., Wu, YC., Wang, SY. (eds) Medicinal Plants and Fungi: Recent Advances in Research and Development. Medicinal and Aromatic Plants of the World, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-5978-0_1

Download citation

Publish with us

Policies and ethics