Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy provides useful information on the structure, topology, and orientation of peptides and proteins bound to lipid bilayers. The structure and orientation of membrane-associated peptides and proteins can be elucidated by analyzing structural constraints obtained from anisotropic chemical-shift interactions, nuclear dipolar interactions, or a combination of these interactions. Detailed structures of various peptides and proteins in their membrane-bound states can be studied by analyzing anisotropic chemical-shift interactions by, for example, chemical-shift oscillation analysis, and nuclear dipolar interactions using techniques such as polarity index slant angle wheel analysis. Magic-angle spinning (MAS) experiments coupled with cross-polarization (CP) and high-power decoupling (CP-MAS) techniques provide high-resolution 13C and 15N NMR signals for selectively or uniformly labeled membrane-bound peptides and proteins in solid-state NMR. Furthermore, homonuclear and heteronuclear dipolar interactions can be recoupled using various spin manipulation pulse sequences under MAS conditions. These experiments enable the correlation of 13C–13C and 13C–15N signals, allowing their assignment to specific amino acid residues and ultimately determination of the high-resolution structure of membrane-bound peptides and proteins.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Opella, S.J., Marassi, F.M.: Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587–3606 (2004)
Watts, A., Straus, S.K., Grage, S.L., Kamihira, M., Lam, Y.H., Zhao, X.: Membrane protein structure determination using solid-state NMR. In: Downing, A.K. (ed.) Protein NMR. Techniques, methods in molecular biology, vol. 278, pp. 403–473. Humana Press, Totowa (2004)
Saitô, H., Ando, I., Naito, A.: NMR constraints for determination of secondary structure. In: Solid state NMR spectroscopy for biopolymers. Principles and Applications, pp. 127–199. Springer, Berlin (2006)
Naito, A.: Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 36, 67–76 (2009)
Opella, S.J., Das, B.B.: Determination of the equivalence of solid-state NMR orientational constraints from magnetic and rotational alignment of the coat protein in a filamentous bacteriophage. In: Separopvic, F., Naito, A. (eds.) Advances in Biological Solid State NMR: Protein and Membrane-Active Peptides, pp. 53–70. Royal Society of Chemistry, Cambridge (2014)
Naito, A., Kawamura, I., Javkhlantugs, N.: Recent Solid-state NMR studies of membrane-bound peptides and proteins. Annu. Rev. NMR Spectrosc. 86, 333–411 (2015)
Toraya, S., Nishimura, K., Naito, A.: Dynamic structure of vesicle-bound melittin in a variety of lipid chain lengths by solid-state NMR. Biophys. J. 87, 3323–3335 (2004)
Marassi, F.M., Ramamoorthy, A., Opella, S.J.: Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc. Natl. Acad. Sci. 94, 8551–8556 (1997)
Opella, S.J.: Solid-state NMR and membrane ptoteins. J. Magn. Reson. 253, 129–137 (2015)
Weingarth, M., Buldus, M.: Introduction to Biological Solid-State NMR: Protein and Membrane Active Peptides, pp. 1–17. Royal Society of Chemistry, Cambridge (2014)
Ward, M.E., Brown, L.S., Ladizhansky, V.: Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to anabaena sensory rhodopsin. J. Magn. Reson. 253, 119–128 (2015)
Naito, A., Nagao, T., Norisada, K., Mizuno, T., Tuzi, S., Saitô, H.: Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13 C NMR spectroscopy. Biophys. J. 78, 2405–2417 (2000)
Wu, C.H., Ramamoorth, A., Opella, S.J.: High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J. Magn. Reson. A109, 270–272 (1994)
Ramamoorthy, A., Wei, Y., Lee, D.-K.: PISEMA solid-state NMR spectroscopy. Annu. Rep. NMR Spectrosc. 52, 1–52 (2004)
Lee, D.K., Narasimhaswamy, T., Ramamoorthy, A.: PITANSEMA, a low-power PISEMA solid-state NMR experiment. Chem. Phys. Lett. 399, 359–362 (2004)
Nishimura, K., Naito, A.: Dramatic reduction of the RF power for attenuation of sample heating in 2D-separated local field solid-state NMR spectroscopy. Chem. Phys. Lett. 402, 245–250 (2005)
Nishimura, K., Naito, A.: Remarkable reduction of rf power by ATANSEMA and DATANSEMA separated local field in solid-state NMR spectroscopy. Chem. Phys. Lett. 419, 120–124 (2006)
Gor’kov, P.L., Chekmenev, E.Y., Li, C., Cotton, M., Butfy, J.J., Traasch, N.J., Veglia, G., Brey, W.W.: Using low-E resonance to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J. Magn. Reson. 185, 77–93 (2007)
Yamamoto, K., Lee, D.K., Ramamoorthy, A.: Spectroscopy, broadband-PISEMA solid-state NMR spectroscopy. Chem. Phys. Lett. 407, 289–293 (2005)
Marassi, F.M., Opella, S.J.: A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155 (2000)
Marrasi, F.M., Ma, C., Gesel, J.J., Opella, S.J.: Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly 15N-labeled helical membrane proteins in oriented lipid bilayers. J. Magn. Reson. 144, 156–161 (2000)
Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, Z., Nishimura, K., Gan, Z., Fu, R., Quine, J.R., Cross, T.A.: Imaging membrane protein helical wheels. J. Magn. Reson. 144, 162–167 (2000)
Gullion, T., Schaefer, J.: Rotational-echo double-resonance. J. Magn. Reson. 81, 196–200 (1989)
Naito, A., Nishimura, K., Kimura, S., Tuzi, S., Aida, M., Yasuoka, N., Saitô, H.: Determination of the three-dimensional structure of a new crystalline form of N-acetyl-Pro-Gly-Phe as revealed by 13C REDOR, X-ray diffraction, and molecular dynamics calculation. J. Phys. Chem. 100, 14995–15004 (1996)
Naito, A., Nishimura, K., Tuzi, S., Saitô, H.: Inter- and intra-molecular contributions of neighboring dipolar pairs to the precise determination of interatomic distances in a simple [13C, 15N]-peptide by 13C, 15N-REDOR NMR spectroscopy. Chem. Phys. Lett. 229, 506–511 (1994)
Jaroniec, C.P., Tounge, B.T., Rienstra, C.M., Herzfeld, J., Griffin, R.G.: Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J. Magn. Reson. 146, 132–139 (2000)
Gullion, T., Schaefer, J.: Elimination of resonance offset effects in rotational-echo double resonance NMR. J. Magn. Reson. 92, 439–442 (1991)
Pan, Y., Gullion, T., Schaefer, J.: Determination of C-N internuclear distances by rotational-echo double-resonance NMR of solids. J. Magn. Reson. 90, 330–340 (1990)
Garbow, J.R., McWherter, C.A.: Determination of the molecular conformation of melanostatin using 13C, 15N-REDOR NMR spectroscopy. J. Am. Chem. Soc. 115, 238–244 (1993)
Suwelack, D., Rothwell, W.P., Waugh, J.S.: Slow molecular motion detecting in the NMR spectra of rotating solids. J. Chem. Phys. 74, 2559–2569 (1980)
Rothwell, W.P., Waugh, J.S.: Transverse relaxation of dipolar coupled spin systems under rf irradiation. J. Chem. Phys. 74, 2721–2732 (1981)
Naito, A., Fukutani, A., Uitdehaag, M., Tuzi, S., Saitô, H.: Backbone dynamics of polycrystalline peptides studied by measurements of 15N NMR lineshapes and 13C transverse relaxation times. J. Mol. Struct. 441, 231–241 (1998)
Kamihira, M., Naito, A., Nishimura, K., Tuzi, S., Saitô, H.: A high-resolution solid-state 13C and 15N NMR study on crystalline Leu- and Met-enkephalins: Distinction of polymorphs, backbone dynamics and local conformational rearrangements induced by dehydration or freezing of motion of bound solvent molecules. J. Phys. Chem. B 102, 2826–2834 (1998)
Peersen, O.B., Groesbeek, M., Aimoto, S., Smith, S.O.: Analysis of rotational resonance magnetization exchange curves from crystalline peptides. J. Am. Chem. Soc. 117, 7228–7237 (1995)
Andrew, E.R.: The narrowing of NMR spectra of solids by high-speed specimen rotation and resolution of chemical shift and spin multiplet structure for solids. Prog. Nucl. Magn. Reson. Spectrosc. 8, 1–39 (1971)
Hartmann, S.R., Hahn, E.L.: Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962)
Pines, A., Gibby, M.G., Waugh, J.S.: Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590 (1973)
Schaefer, J., Stejeskal, E.O.: Carbon-13 nuclear magnetic resonance of polymers spinning at magic angle. J. Am. Chem. Soc. 98, 1031–1032 (1976)
Baldus, M., Petokova, A.T., Herzfeld, J., Griffin, R.G.: Cross polarization in the tilted frame assignment and spectral simplification in heteronuclear spin system. Mol. Phys. 95, 1197–1207 (1998)
Lewandowski, J.R., Paep, G.D., Griffin, R.G.: Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007)
Paep, G.D., Lewandowski, J.R., Loquet, A., Bockmann, A., Griffin, R.G.: Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129, 245101 (2008)
Grommek, A., Meier, B.H., Ernst, M.: Distance information from proton-driven spin diffusion under MAS. Chem. Phys. Lett. 427, 631–637 (2006)
Takegoshi, K., Nakamura, S., Terao, T.: 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001)
Takegoshi, K., Nakamura, S., Terao, T.: 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J. Chem. Phys. 118, 2325–2341 (2003)
Weingarth, M., Demaco, D.E., Bodenhausen, G., Tekely, P.: Improved magnetization transfer in solid-state NMR with fast magic angle spinning. Chem. Phys. Lett. 469, 342–348 (2009)
Scholz, I., Huber, M., Manolikas, T., Meier, B.H., Ernst, M.: MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem. Phys. Lett. 460, 278–283 (2008)
Weigarth, M., Masuda, Y., Takegoshi, K., Bodenhausen, G., Tekely, P.: Sensitive 13C–13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields. J. Biomol. NMR 50, 129–136 (2011)
Egawa, A., Fujiwara, T., Mizoguchi, T., Kakitani, Y., Koyama, Y., Akutsu, H.: Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc. Natl. Acad. Sci. 104, 790–795 (2007)
Dumez, J.L., Emsley, L.: A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes. Phys. Chem. Chem. Phys. 13, 7363–7370 (2011)
Kubo, A., McDowell, C.A.: Spectral spin diffusion in polycrystalline solids under magic angle spinning. Chem. Soc. Faraday Trans. I 84, 3713–3730 (1988)
Kubo, A., McDowell, C.A.: 31P spectral spin diffusion in crystalline solids. J. Chem. Phys. 89, 63–70 (1988)
Grommek, A., Meier, B.H., Ernst, M.: Distance information from proton-driven spin diffusion under MAS. Chem. Phys. Lett. 427, 404–409 (2006)
Toraya, S., Nagao, T., Norisada, K., Tuzi, S., Saitô, H., Izumi, S., Naito, A.: Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature. Biophys. J. 89, 3214–3222 (2005)
Norisada, K., Javkhlantugs, N., Mishima, D., Kawamura, I., Saitô, H., Ueda, K., Naito, A.: Dynamic structure and orientation of melittin bound to acidic lipid bilayers, as revealed by solid-state NMR and molecular dynamics simulation. J. Phys. Chem. B 121, 1802–1811 (2017)
Uezono, T., Toraya, S., Obata, M., Nishimura, K., Tuzi, S., Saitô, H., Naito, A.: Structure and orientation of dynorphin bound to lipid bilayers by 13C solid-state NMR. J. Mol. Struct. 749, 13–19 (2005)
Toraya, S., Javkhlantugs, N., Mishima, D., Nishimura, K., Ueda, K., Naito, A.: Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys. J. 99, 3282–3289 (2010)
Tsutsumi, A., Javkhlantugs, N., Kira, A., Umeyama, M., Kawamura, I., Nishimura, K., Ueda, K., Naito, A.: Structure and orientation of bovine lactroferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamic simulation. Biophys. J. 103, 1735–1743 (2012)
Kira, A., Javkhlantugs, N., Miyamori, T., Sasaki, Y., Eguchi, M., Kawamura, I., Ueda, K., Naito, A.: Interaction of extracellular loop II of k-opioid receptor (196–228) with opioid peptide dynorphin in membrane environments as revealed by solid state nuclear magnetic resonance, quartz crystal microbalance and molecular dynamics simulation. J. Phys. Chem. B 2014(118), 9604–9612 (2014)
Nagao, T., Mishima, D., Javkhlantugs, N., Wang, J., Ishioka, D., Yokota, K., Norisada, K., Kawamura, I., Ueda, K., Naito, A.: Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim. Biophys. Acta 2015(1848), 2789–2798 (2015)
Habermann, E., Jentsc, J.: Sequence analysis of melittin from tryptic and peptic degradation and products. Hoppe-Seyler’s Z. Phys. Chem. 348, 37–50 (1967)
Sessa, G., Free, J.H., Colacicco, G., Weissmann, G.: Interaction of a lytic polypeptide, melittin, with lipid membrane systems. J. Biol. Chem. 244, 3575–3582 (1969)
Tosteson, M.T., Tosteson, D.C.: The sting melittin forms channels in lipid bilayers. Biophys. J. 36, 109–116 (1981)
Dempsey, C.E.: The action of melittin on membrane. Biochim. Biophys. Acta 1031, 143–161 (1990)
Dufourcq, J., Faucon, J.-F., Fourche, G., Dasseux, J.L., Le Maire, M., Gulik-Krywicki, T.: Morphological change of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim. Biophys. Acta 859, 33–48 (1986)
Saitô, H.: Conformation-dependent 13C chemical shifts: a new means of conformation characterization as obtained by high-resolution solid-state 13C NMR. Magn. Reson. Chem. 24, 835–852 (1986)
Saitô, H., Ando, I.: High-resolution solid-state NMR studies of synthetic and biological macromolecules. Annu. Rep. NMR Spectrosc. 21, 209–290 (1989)
Naito, A., Saitô, H.: Limit of accuracy of internuclear distances measured by REDOR. Encycl. Nucl. Magn. Reson. 9, 191–283 (2002)
Meyer, C.E., Reusser, F.: A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia 23, 85–86 (1967)
Balasubramanian, T.M., Kendrick, N.C.E., Taylor, M., Marshall, G.R., Hall, J.E., Vodyanoy, J., Reusser, F.: Synthesis and characterization of the major component of alamethicin. J. Am. Chem. Soc. 103, 6127–6132 (1981)
Vedovato, N., Baldhini, C., Toniolo, C., Rispoli, G.: Pore-forming properties of alamethicin F50/5 inserted in a biological membrane. Chem. Biodivers. 4, 1338–1346 (2007)
Mueller, P., Rudin, D.O.: Action potentials induced in biomolecular lipid membranes. Nature 217, 713–719 (1068)
Dave, P.C., Billington, E., Pan, Y.-L., Straus, S.K.: Interaction of alamethicin with ether-linked phospholipid bilayers: oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry studies. Biophys. J. 89, 2434–2442 (2005)
Tieleman, D.P., Berendsen, H.J.C., Sanson, M.S.P.: Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces. Biophys. J. 80, 331–346 (2001)
Fox Jr., R.O., Richards, F.M.: A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 300, 325–330 (1982)
Pan, P., Tristram-Nagle, S., Nagle, J.F.: Alamethicin aggregation in lipid membranes. J. Membr. Biol. 231, 11–27 (2009)
Sansom, M.S.: Alamethicin and related peptaibols—model ion channels. Eur. Biophys. J. 22, 105–124 (1993)
Saitô, H., Tabeta, R., Formaggio, F., Crisma, M., Toniolo, C.: High-resolution solid-state 13C-NMR of peptides: A study of chain-length dependence for 310-helix formation. Biopolymers 27, 1607–1617 (1988)
Nagao, T., Naito, A., Tuzi, S., Saitô, H.: Conformation and orientation of biologically active peptide alamethicin in phospholipid bilayer by high-resolution solid state NMR spectroscopy. Pept. Sci. 1988, 341–344 (1988)
Bak, M., Bywater, R.P., Hohwy, M., Thomsen, J.K., Adelhorst, K., Jakobsen, H.J., Søronsen, O.W., Nielsen, N.C.: Conformation of alamethicin in oriented phospholipid bilayers determined by 15N solid-state nuclear magnetic resonance. Biophys. J. 81, 1684–1698 (2001)
Bertelsen, K., Paaske, B., Thøgersen, L., Tajkhorshid, E., Schiøtt, B., Skrydstrup, T., Nielsen, N.C., Vosegaard, T.: Residue-specific information about the dynamics of antimicrobial peptides from 1H–15N and 2H solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 18335–18342 (2009)
Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O’Neil, J.D.J., Raap, J.: 15N and 31P solid-state NMR investigations on the orientation of Zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 40, 9428–9437 (2001)
Salnikov, E.S., Friedrich, H., Li, X., Bertani, P., Reissmann, S., Hertweck, C., O’Neil, J.D.J., Raap, J., Bechinger, B.: Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys. J. 96, 86–100 (2009)
van der Kraan, M.I.A., Groenink, J., Nazmi, K., Veeman, E.C.I., Bolscher, J.G.M., Amerongen, A.V.N.: Lactoferrampin: A novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25, 177–183 (2004)
van der Kraan, M.I.A., van Marle, J., Nazmi, K., Groenink, J., van’t Hof, W., Veerman, E.C.I., Bolscher, J.G.M., Amerongen, A.V.N.: Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 26, 1537–1542 (2005)
van der Kraan, M.I.A., Nazmi, K., Teeken, A., Groenink, J., van’t Hof, W., Veeman, E.C.I., Bolscher, J.M.G., Amerongen, A.V.N.: Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol. Chem. 386, 137–142 (2005)
Haney, E.F., Lau, F., Vogel, H.J.: Solution structure and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochim. Biophys. Acta 1768, 2355–2364 (2007)
Jenssen, H., Hamill, P., Hancock, R.E.W.: Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511 (2006)
Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K.: An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361–11368 (1996)
Katherine, A., Wildman, H., Lee, D.-K., Ramamoorthy, A.: Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42, 6545–6558 (2003)
Steve, K.H., Ludtke, L., Worcester, D.L., Huang, H.W.: Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys. J. 1996(70), 2659–2666 (1996)
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y.: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423 (1992)
Umeyama, M., Kira, A., Nishimura, K., Naito, A.: Interaction of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochim. Biophys. Acta 1758, 1523–1528 (2006)
Park, S.H., Das, B.B., Casagrande, F., Tian, F.Y., Nothnagel, H.J., Chu, M., Kiefer, H., Maier, K., De Angelis, A.A., Marassi, F.M., Opella, S.J.: Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491, 779–783 (2012)
Shahid, S.A., Bardiaux, B., Franks, W.T., Krabben, L., Habeck, M., van Rossum, B.-J., Linke, D.: Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat. Methods 9, 1212–1217 (2012)
Wang, S., Munro, R.A., Shi, L., Kawamura, I., Okitsu, T., Wada, A., Kim, S.-Y., Jung, K.-H., Brown, L.S., Ladizhansky, V.: Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat. Methods 10, 1007–1012 (2013)
Tang, M., Nesbill, A.E., Sperling, L.J., Berthold, D.A., Schwieters, C.D., Gennis, R.B., Rienstra, C.M.: Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. J. Mol. Biol. 425, 1670–1682 (2013)
Traaseth, N.J., Shi, L., Verardi, R., Mullen, D.G., Barany, G., Veglia, G.: Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc. Natl. Acad. Sci. USA 106, 10165–10170 (2009)
Suter, D., Ernst, R.R.: Spin diffusion in resolved solid-state NMR spectra. Phys. Rev. 32, 5608–5627 (1985)
Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K., Oschkinat, H.: Structure of a protein determination by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002)
Crocker, E., Patel, A.B., Eilers, M., Jayaraman, S., Getmanova, E., Reeves, P.J., Ziliox, M., Khorana, H.G., Sheves, M., Smith, S.O.: Dipolar assisted rotational resonance NMR of tryptophan and tyrosine in rhodopsin. J. Biomol. NMR 29, 11–20 (2004)
Marulanda, D., Tasayco, M.L., Cataldi, M., Arriaran, V., Polenova, Y.: Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic spinning solid-state NMR spectroscopy. J. Phys. Chem. B 109, 18135–18145 (2005)
Eilers, M., Goncalves, J.A., Ahuja, S., Kirkup, C., Hirshfeld, A., Simmerling, C., Reeves, P.J., Sheves, M., Smith, S.O.: Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I. J. Phys. Chem. B 116, 10477–10489 (2012)
Kimata, N., Pope, A., Eilers, M., Opefi, C.A., Ziliox, M., Hirshfeld, A., Zaitseva, E., Vogel, R., Sheves, M., Reeves, P.J., Smith, S.O.: Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat. Commun. 7, 12683 (2016)
Kato, H.E., Inoue, K., Abe-Yoshizumi, R., Kato, Y., Ono, H., Konno, M., Hososhima, S., Ishizuka, T., Hoque, M.R., Kunitomo, H., Ito, J., Yoshizawa, S., Yamashita, K., Takemoto, M., Nishizawa, T., Taniguchi, R., Kogure, K., Maturana, A.D., Iino, Y., Yawo, H., Ishitani, R., Kandori, H., Nureki, O.: Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521, 48–53 (2015)
Shigeta, A., Ito, S., Inoue, K., Okitsu, T., Wada, A., Kandori, K., Kawamura, I.: Solid-state nuclear magnetic resonance structural study of the retinal-binding pocket in sodium ion pump rhodopsin. Biochemistry 56, 543–550 (2017)
Lange, A., Giller, K., Hornig, S., Martin-Eauclaire, M.-F., Pongs, O., Becker, S., Baldus, M.: Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959–962 (2006)
Emami, S., Fan, Y., Munro, R., Ladizhansky, V., Brown, L.S.: Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J. Biomol. NMR 55, 147–155 (2013)
Yang, J., Aslimovska, L., Glaubitz, C.: Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J. Am. Chem. Soc. 133, 4874–4881 (2011)
Shi, L., Ahmed, M.A.M., Zhang, W., Whited, G., Brown, L.S., Ladizhansky, V.: Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structure insights. J. Mol. Biol. 386, 1078–1093 (2009)
Etzkom, M., Seidel, K., Li, L., Martell, S., Geyer, M., Engelhard, M., Baldus, M.: Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18, 293–300 (2010)
Shen, Y., Delaglio, F., Cornilescua, G., Bax, Ad: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009)
Jung, K.-H., Trivedi, V.D., Spudich, J.L: Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47, 1513–1522 (2003)
Shi, L., Kawamura, I., Jung, K.-H., Brown, L.S., Ladizhansky, V.: Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew. Chem. Int. Ed. 50, 1302–1305 (2011)
Vogeley, L., Sineshchekov, O.A., Trivedi, V.D., Sasaki, J., Spudich, J.L., Luecke, H.: Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306, 1390–1393 (2004)
Wang, S., Shi, L., Okitsu, T., Wada, A., Brown, L.S., Ladizhansky, V.: Solid-state NMR 13C and 15N resonance assignments of a seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol. NMR Assign 7, 253–256 (2013)
Wang, S., Shi, L., Kawamura, I., Brown, L.S., Ladizhansky, V.: Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys. J. 101, L23–L25 (2011)
Peng, X., Libich, D., Janik, R., Harauz, G., Ladizhansky, V.: Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement. J. Am. Chem. Soc. 130, 359–369 (2007)
Lange, A., Luca, S., Baldus, M.: Structure constraints from protein-mediated rare-spin correlation spectroscopy in rotating solids. J. Am. Chem. Soc. 124, 9704–9705 (2002)
Wang, S., Munro, R.A., Kim, S.Y., Jung, K.-H., Brown, L.S., Ladizhansky, V.: Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein. J. Am. Chem. Soc. 134, 16995–16998 (2012)
Acknowledgements
This work was supported by grants-in-aid for Scientific Research in an Innovative Area (16H00756 to AN and 16H00828 to IK) and by a grant-in-aid for Scientific Research (C) (15K06963 to AN) and Research (B) (15H04336 to IK) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Kawamura, I., Norisada, K., Naito, A. (2018). Structure Determination of Membrane Peptides and Proteins by Solid-State NMR. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_9
Download citation
DOI: https://doi.org/10.1007/978-981-10-5966-7_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5965-0
Online ISBN: 978-981-10-5966-7
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)