Skip to main content

Solid-State 2H NMR Studies of Molecular Motion in Functional Materials

  • Chapter
  • First Online:
Experimental Approaches of NMR Spectroscopy

Abstract

In this chapter, the analysis of molecular motion in solid materials, which is connected with the function of those materials, using 2H NMR spectroscopy is described. The line shape of a 2H NMR spectrum, which is dominated by the quadrupole interaction, is very sensitive to molecular motion. The mode and rate of molecular motion in the dynamic range of 104–107 Hz can be obtained by the line shape analysis of a 2H NMR broad line spectrum of a powder sample using spectral simulation. Molecular motion in the order of 103 and 108 Hz can be analyzed by a line shape and line width of a 2H NMR Quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) spectrum. The analysis of molecular motion in paramagnetic materials is possible by simulation of the 2H NMR spectrum, including paramagnetic effects. The methods used to simulate these spectra are explained. In addition, the application of these methods to porous coordination polymer (PCP)/metal organic framework (MOF), proton-conducting material, and spin-crossover material is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vold, R.R.: Deuterium NMR studies of dynamics in solids and liquid crystals. In: Tycko, R. (ed.) Nuclear Magnetic Resonance Probes of Molecular Dynamics, pp. 27–112. Kluwer, Norwell (1994)

    Chapter  Google Scholar 

  2. Vold, R.R., Vold, R.L.: Deuterium relaxation in molecular solids. In: Warren, W.S. (ed.) Advances in Magnetic and Optical Resonance, vol. 16, pp. 85–171. Academic Press Inc, San Diego (1991)

    Google Scholar 

  3. Schmidt-Rohr, K., Spiess, H.W.: Multidimensional Solid-State NMR and Polymers. Academic Press, London (1994)

    Google Scholar 

  4. Greenfield, M.S., Ronemus, A.D., Vold, R.L., Vold, R.R., Ellis, P.D., Raidy, T.E.: Deuterium quadrupole-echo NMR spectroscopy. III. Practical aspects of lineshape calculations for multiaxis rotational processes. J. Magn. Reson. 72, 89–107 (1987)

    Google Scholar 

  5. Barbara, T.M., Greenfield, M.S., Vold, R.L., Vold, R.R.: Deuterium quadrupole echo NMR spectroscopy. I. Effects of chemical exchange during single and composite pulses. J. Magn. Reson. 69, 311–330 (1986)

    CAS  Google Scholar 

  6. Long, J.R., Ebelhauser, R., Griffin, R.G.: 2H NMR line shapes and spin–lattice relaxation in Ba(ClO3)2·2H2O. J. Phys. Chem. A 101, 988–994 (1997)

    Article  CAS  Google Scholar 

  7. Wittebort, R.J., Olejniczak, E.T., Griffin, R.G.: Analysis of deuterium nuclear magnetic resonance line shapes in anisotropic media. J. Chem. Phys. 86, 5411–5420 (1987)

    Article  CAS  Google Scholar 

  8. Hiyama, Y., Silverton, J.V., Torchia, D.A., Gerig, J.T., Hammond, S.J.: Molecular structure and dynamics of crystalline p-fluoro-d, l-phenylalanine. A combined X-ray/NMR investigation. J. Am. Chem. Soc. 108, 2715–2723 (1986)

    Article  CAS  Google Scholar 

  9. Araya, T., Niwa, A., Mizuno, M., Endo, K.: Dynamics of [Zn(D2O)6]2+ in [Zn(D2O)6][SiF6] crystal as studied by 1D, 2D spectra and spin-lattice relaxation time of 2H NMR. Chem. Phys. 344, 291–298 (2008)

    Article  CAS  Google Scholar 

  10. Larsen, F.H., Jakobsen, H.J., Ellis, P.D., Nielsen, N.C.: Molecular dynamics from 2H Quadrupolar Carr–Purcell–Meiboom–Gill solid-state NMR spectroscopy. Chem. Phys. Lett. 292, 467–473 (1998)

    Article  CAS  Google Scholar 

  11. Shiminovitch, D.J., Rance, M., Jeffrey, K.R., Brown, M.F.: The quadrupolar spectrum of a spin I = 1 in a lipid bilayer in the presence of paramagnetic ions. J. Magn. Reson. 58, 62–75 (1984)

    Google Scholar 

  12. Antonijevic, S., Wimperis, S.: Refocussing of chemical and paramagnetic shift anisotropies in 2H NMR using the quadrupolar-echo experiment. J. Magn. Reson. 164, 343–350 (2003)

    Article  CAS  Google Scholar 

  13. Lin, T.-H., DiNatale, J.A., Vold, R.R.: Determination of molecular reorientation rates and electron-nuclear coupling in paramagnetic materials by deuterium solid echo NMR spectroscopy. J. Am. Chem. Soc. 116, 2133–2134 (1994)

    Article  CAS  Google Scholar 

  14. Mizuno, M., Hamada, Y., Kitahara, T., Suhara, M.: Deuterium NMR study of unstable phenomena and water molecular dynamics in samarium nitrate hexahydrate crystal. J. Phys. Chem. A 103, 4981–4985 (1999)

    Article  CAS  Google Scholar 

  15. Mizuno, M., Iijima, T., Suhara, M.: Dynamical Structure of Paramagnetic [M(H2O)6][SiF6] (M=Fe2+, Ni2+) crystal studied by means of 2H nuclear magnetic resonance. J. Phys. Condens. Matter 12, 7261–7273 (2000)

    Article  CAS  Google Scholar 

  16. Mizuno, M., Itakura, N., Endo, K.: Effects of strong paramagnetic interactions on solid-state deuterium NMR spectra. Chem. Phys. Lett. 416, 358–363 (2005)

    Article  CAS  Google Scholar 

  17. Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957)

    Google Scholar 

  18. Bloom, M., Davis, J.H., Valic, M.I.: Spectral distortion effects due to finite pulse widths in deuterium nuclear magnetic resonance spectroscopy. Can. J. Phys. 58, 1510–1517 (1980)

    Article  CAS  Google Scholar 

  19. Tanaka, D., Masaoka, S., Horike, S., Furukawa, S., Mizuno, M. Endo, K., Kitagawa, S.: Porous coordination polymer with π Lewis acidic pore surface, {[Cu3(CN)3{hat-(CN)3(OEt)3}]·3THF} n . Angew. Chem. Int. Ed. 45, 4628–4631 (2006)

    Google Scholar 

  20. Horike, S., Matsuda, R., Tanaka, D., Matsubara, S., Mizuno, M., Endo, K., Kitagawa, S.: Dynamic motion of building blocks in porous coordination polymers. Angew. Chem. Int. Ed. 45, 7226–7230 (2006)

    Article  CAS  Google Scholar 

  21. Takamizawa, S., Nataka, E., Akatsuka, T., Miyake, R., Kakizaki, Y., Takeuchi, H., Maruta, G., Takeda, S.: Crystal transformation and host molecular motions in CO2 adsorption process of a metal benzoate pyrazine (MII = Rh, Cu). J. Am. Chem. Soc. 132, 3783–3792 (2010)

    Article  CAS  Google Scholar 

  22. Hijikata, Y., Horike, S., Tanaka, D., Groll, J., Mizuno, M., Kim, J., Takatade, M., Kitagawa, S.: Differences of crystal structure and dynamics between soft porous nanocrystal and bulk crystal. Chem. Commun. 47, 7632–7634 (2011)

    Google Scholar 

  23. Zhu, K., Vukotic, V.N., O’Keefe, C.A., Schurko, R.W., Loeb, S.J.: Metal-organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 136, 7403–7409 (2014)

    Article  CAS  Google Scholar 

  24. Inukai, M., Fukushima, T., Hijikata, Y., Ogiwara, N., Horike, S., Kitagawa, S.: Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach. J. Am. Chem. Soc. 137, 12183–12186 (2015)

    Article  CAS  Google Scholar 

  25. Chun, H., Dybtsev, D.N., Kim, H., Kim, K.: Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005)

    Article  CAS  Google Scholar 

  26. Bureekaew, S., Horike, S., Higuchi, M., Mizuno, M., Kawamura, T., Tanaka, D., Yanai, N., Kitagawa, S.: One-dimensional imidazole aggregate in aluminum porous coordination polymers with high proton conductivity. Nature Mater. 8, 831–836 (2009)

    Article  CAS  Google Scholar 

  27. Sevil, F., Bozkurt, A.: Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. J. Phys. Chem. Solids 65, 1659–1662 (2004)

    Article  CAS  Google Scholar 

  28. Mizuno, M., Iwasaki, A., Umiyama, T., Ohashi, R., Ida, T.: Local structure and dynamics of imidazole molecules in proton-conducting poly(vinylphosphonic acid)-imidazole composite material. Macromolecules 47, 7469–7476 (2014)

    Article  CAS  Google Scholar 

  29. Lee, Y.J., Murakhtina, T., Sebastiani, D., Spiess, H.W.: 2H solid-state NMR of mobile protons: it is not always the simple way. J. Am. Chem. Soc. 129, 12406–12407 (2007)

    Article  CAS  Google Scholar 

  30. Hansen, M.R., Graf, R., Spiess, H.W.: Solid-state NMR in macromolecular systems: insights on how molecular entities move. Acc. Chem. Res. 46, 1996–2007 (2013)

    Article  CAS  Google Scholar 

  31. Rodríguez-Velamazán, J.A., González, M.A., Real, J.A., Castro, M., Muñoz, M.C., Gaspar, A.B., Ohtani, R., Ohba, M., Yoneda, K., Hijikata, Y., Yanai, N., Mizuno, M., Ando, H., Kitagawa, S.: A switchable molecular rotator: neutron spectroscopy study on a polymeric spin-crossover compound. J. Am. Chem. Soc. 134, 5083–5089 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Mizuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizuno, M. (2018). Solid-State 2H NMR Studies of Molecular Motion in Functional Materials. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_12

Download citation

Publish with us

Policies and ethics