Advertisement

A Clifford-Finslerian Physical Unification and Fractal Dynamics

  • Fred Y. YeEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

A Clifford–Finslerian physical unification is proposed based on Clifford-Finslerian mathematical structures and three physical principles.

Notes

Acknowledgements

This chapter is a revision of the original version published at Chaos, Solitons and Fractals, 2009, 41(5): 2301–2305.

References

  1. Alder, S.L.: Quarternionic quantum field theory. Commun. Math. Phys. 104, 611–656 (1986)CrossRefGoogle Scholar
  2. Alder, S.L.: Quarternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)Google Scholar
  3. Ambjorn, J., Jurkiewicz, J., Loll, R.: The universe from scratch. Contemp. Phys. 47(2), 103–117 (2006)CrossRefGoogle Scholar
  4. Amelino-Camelia, G., Smolin, L., Starodubtsew, A.: Quantum symmetry, the cosmological constant and Planck-scale phenomenology. Class. Quant. Grav. 21, 3095–3110 (2004)CrossRefGoogle Scholar
  5. Amsler, C., et al.: (Particle data group) 2008. Review of particle physics. Phys. Lett. B 667(1/2/3/4/5), 1–6Google Scholar
  6. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quant. Grav. 21, 53–152 (2004)CrossRefGoogle Scholar
  7. Baez, J.C.: The Octonions. arXiv:math-ra/0105155v4 (2002)
  8. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, London (2000)CrossRefGoogle Scholar
  9. Bilson-Thompson, S.O., Markopoulou, F., Smolin, L.: Quantum gravity and the standard model. Class. Quant. Grav. 24, 3975–3993 (2007)CrossRefGoogle Scholar
  10. Cao, S.L.: Relativity and Cosmology in Finslerian Time-Space. Beijing Normal University Press, Beijing (2001)Google Scholar
  11. Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995)CrossRefGoogle Scholar
  12. de Leo, S.: Quaternions for GUTs. Int. J. Theor. Phys. 35(9), 1821–1837 (1996)CrossRefGoogle Scholar
  13. El Naschie, M.S.: Quantum golden field theory–ten theorems and various conjectures. Chaos Solitons Fractals 36, 1121–1125 (2008)CrossRefGoogle Scholar
  14. Jurkiewicz, J., Loll, R., Ambjorn, J.: Using causality to solve the puzzle of quantum spacetime. http://www.sciam.com/article.cfm?id=the-self-organizing-quantum-universe (2008). 08 Aug 2008
  15. Markopoulou, F., Smolin, L.: Quantum theory from quantum gravity. Phys. Rev. D 70, 124029 (2004)CrossRefGoogle Scholar
  16. Penrose, R.: The central programme of twistor theory. Chaos Solitons Fractals 10(2/3), 581–611 (1999)CrossRefGoogle Scholar
  17. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London (2004)Google Scholar
  18. Penrose, R., Rindler, W.: Spinors and Space-time, vol. 1. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  19. Penrose, R., Rindler, W.: Spinors and Space-time, vol. 2. Cambridge University Press, Cambridge (1986)CrossRefGoogle Scholar
  20. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  21. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 09, 32 (1999)CrossRefGoogle Scholar
  22. Smolin, L.: Towards a background independent approach to M theory. Chaos Solitons Fractals 10(2/3), 555–565 (1999)CrossRefGoogle Scholar
  23. Smolin, L.: The Trouble with Physics. Houghton Mifflin Co, New York (2006)Google Scholar
  24. Sweetser, D.B.: Doing physics with quaternions. http://www.theworld.com/sweetser/quanternions/ps/book.pdf (2001)
  25. Vacaru, S.L.: Nonholonomic clifford structures and noncommutative riemann-finsler geometry. http://www.mathem.pub.ro/dgds/mono/va-t.pdf (2004). 08 Aug 2008
  26. Vargas, J.G., Torr, D.G.: Marriage of Clifford algebra and Finsler geometry: a lineage for unification? Int. J. Theor. Phys. 40(1), 275–298 (2001)CrossRefGoogle Scholar
  27. Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443(1/2), 85–126 (1995)CrossRefGoogle Scholar
  28. Ye, F.Y.: Approaches to the Natural World Based on Three Principles of Mathematical Physics. Analysis and Creation. 2nd edn. Beijing, China Society Press, pp. 175–184 (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2017

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingChina

Personalised recommendations