Advertisement

The Physical Linked-Measure Works as Vortex with Linking to Turbulence

  • Fred Y. YeEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

A physical linked-measure is mathematically consisted of a complex scalar, a complex vector and a bi-vector and is geometrically equivalent to a vortex. When the complex scalar means mass, the complex vector implies directed momentum and the bi-vector rotates angular momentum, with using the least action principle to the linked-measure, yielding energy-mass-momentum-angular momentum joint conservation.

Notes

Acknowledgements

This chapter is a revision of the original version published at Physical Journal, 2015, 1(3): 209–215

References

  1. Anderson, J.D.: Fundamental of Aerodynamics. McGraw-Hill, Boston (2001)Google Scholar
  2. Ashtekar, A.: Black hole mechanics. In: Francoise, J. P., Naber, G. L., Tsou, S. T., et al. (eds.) Encyclopedia of Mathematical Physics, 300–305. Springer, Heidelberg (2006)Google Scholar
  3. Chow, J.S., Zilliac, G.G., Bradshaw, P.: Mean and turbulence measurements in the near field of a wingtip vortex. AIAA J. 35(10), 1561–1567 (1997)CrossRefGoogle Scholar
  4. Davidson, L.: Fluid Mechanics, Turbulent Flow and Turbulence Modeling. Chalmers University of Technology, Sweden (2015)Google Scholar
  5. Doran, C.J.L., Lasenby, A.N.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  6. Ecke, R.: The Turbulence problem: an experimentalist’s perspective. Los Alamos Sci. 29, 124–141 (2005)Google Scholar
  7. Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992)CrossRefGoogle Scholar
  8. Farge, M., Schneider, K.: Wavelets: Application to Turbulence. In: Francoise, J.P., Naber, G.L., Tsou, S.T., et al. (eds.) Encyclopedia of Mathematical Physics, 5th edn, pp. 408-420. Springer, Heidelberg (2006)Google Scholar
  9. Frolov, V.P., Novikov, I.D.: Black Hole Physics: Basic Concepts and New Developments (Fundamental Theories of Physics 96). Kluwer, Amsterdam (1997)Google Scholar
  10. Green, S.I.: Wing Tip Vortices//Green, pp. 427–470. Kluwer, S. I. Fluid Vortices. Amsterdam (1995)Google Scholar
  11. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(7), 691–714 (2003)CrossRefGoogle Scholar
  12. Landau, L.D., Lifshits, E.M.: Fluid Mechanics, 2nd edn., vol. 6. Translated by Sykes, J. B., Reid, W. H. Pergamon, New York (1987)Google Scholar
  13. Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philosophical Trans. R. Soc. London A 356, 487–582 (2004)CrossRefGoogle Scholar
  14. Lesieur, M.: Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  15. Nitsche, M.: Vortex dynamics. In: Francoise, J.P., Naber, G.L., Tsou, S. T., et al. (eds.) Encyclopedia of Mathematical Physics, 5th edn, pp. 388–399. Springer, Heidelberg (2006)Google Scholar
  16. Papantonopoulos, E.: Physics of Black Holes: A Guided Tour. Springer, Berlin (2009)CrossRefGoogle Scholar
  17. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London (2004)Google Scholar
  18. Pullin, D.I., Saffman, P.G.: Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 31–51 (1998)CrossRefGoogle Scholar
  19. Rosa, R.M.S.: Turbulence theories. In: Francoise, J.P., Naber, G.J., Tsou, S.T., et al. Encyclopedia of Mathematical Physics, 5th edn, pp. 295–303. Springer, Heidelberg (2006)Google Scholar
  20. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)Google Scholar
  21. Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36(2), 173–184 (1998)CrossRefGoogle Scholar
  22. Ye, F.Y.: A Clifford-Finslerian physical unification and fractal dynamics. Chaos, Solitons Fractals 41(5), 2301–2305 (2009)CrossRefGoogle Scholar
  23. Ye, F.Y.: The linked-measure and linked-field for linking micro-particles to macro-cosmos and dispelling dark matter and dark energy. Phys. J. 1(2), 89–96 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2017

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingChina

Personalised recommendations