Advertisement

The Empirical Investigation and Theoretical Unification of Mathematical Models for the h-Index

  • Fred Y. YeEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Among existing theoretical models for the h-index, Hirsch’s original formula, the Egghe-Rousseau model and the Glänzel-Schubert model are the three main representatives.

Notes

Acknowledgements

I acknowledge NSFC Grants (number 70773101 and number 7101017006) and am grateful to Dr. Ronald Rousseau for his comments. This chapter began in China and was completed in Germany, I thank financial support from Humboldt University and conditions provided by Prof. Stefan Hornbostel, Dr. Sybille Hinze and iFQ colleagues. This chapter is integrated and revised by merging two published papers: (1) Ye, F. Y. 2009. An investigation on mathematical models of the h-index. Scientometrics, 81 (2): 493–498; (2) Ye, F. Y. 2011. A unification of three models for the h-index. Journal of the American Society for Information Science and Technology, 62(1): 205–207.

References

  1. Alonso, S., Cabrerizob, F.J., Herrera-Viedmac, E., et al.: \(h\)-index: a review focused in its variants, computation and standardization for different scientific fields. J. Inform. 3, 273–289 (2009)CrossRefGoogle Scholar
  2. Braun, T., Glänzel, W., Schubert, A.: A Hirsch-type index for journals. Scientometrics 69(1), 169–173 (2006)CrossRefGoogle Scholar
  3. Burrell, Q.L.: On the \(h\)-index, the size of the Hirsch core and Jin’s \(A\)-index. J. Inform. 1(2), 170–177 (2007)CrossRefGoogle Scholar
  4. Csajbok, E., Berhidi, A., Vasaa, L., et al.: Hirsch-index for countries based on Essential Science Indicators data. Scientometrics 73(1), 91–117 (2007)CrossRefGoogle Scholar
  5. Egghe, L.: Untangling Herdan’s law and Heaps’ law: mathematical and informetric arguments. J. Am. Soc. Inform. Sci. Technol. 58(5), 702–709 (2007)CrossRefGoogle Scholar
  6. Egghe, L.: The hirsch index and related impact measures. Ann. Rev. Inform. Sci. Technol. 44, 65–114 (2010)CrossRefGoogle Scholar
  7. Egghe, L., Rousseau, R.: An informetric model for the Hirsch-index. Scientometrics 69(1), 121–129 (2006)CrossRefGoogle Scholar
  8. Glänzel, W.: On the \(h\)-index–a mathematical approach to a new measure of publication activity and citation impact. Scientometrics 67(2), 315–321 (2006)CrossRefGoogle Scholar
  9. Guan, J.C., Gao, X.: Exploring the \(h\)-index at patent level. J. Am. Soc. Inform. Sci. Technol. 59(13), 1–6 (2008)Google Scholar
  10. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Nat. Acad. Sci. U.S.A. 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  11. Rousseau, R., Ye, F.Y.: A proposal for a dynamic \(h\)-type index. J. Am. Soc. Inform. Sci. Technol. 59(11), 1853–1855 (2008)CrossRefGoogle Scholar
  12. Schubert, A., Glänzel, W.: A systematic analysis of Hirsch-type indices for journals. J. Inform. 1(2), 179–184 (2007)CrossRefGoogle Scholar
  13. van Raan, A.F.J.: Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgement for 147 chemistry research group. Scientometrics 67(3), 491–502 (2006)CrossRefGoogle Scholar
  14. Ye, F.Y.: An investigation on mathematical models of the \(h\)-index. Scientometrics 81(2), 493–498 (2009)CrossRefGoogle Scholar
  15. Ye, F.Y., Rousseau, R.: The power law model and total career \(h\)-index sequences. J. Inform. 2(4), 288–297 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2017

Authors and Affiliations

  1. 1.Nanjing UniversityNanjingChina

Personalised recommendations