Skip to main content

Liquid Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
Molecular Devices for Solar Energy Conversion and Storage

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Dye-sensitized solar cells represent a type of device which converts solar energy into electricity based on molecular components. This is an attractive alternative for solar energy conversion because such devices can be made as low-cost, colorful, and transparent solar cell in contrast to the traditional semiconductor-based solar cells. In this chapter, we will give an overview of all molecule-based components in this kind of solar cell and also comment on its working principle, the dye design, the dye arrangement, the electrolyte composition, as well as the counter electrode materials. The standard types of dye-sensitized solar cells are regarded as n-type, but at the end, p-type and tandem dye-sensitized solar cells will also be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerischer H (1978) Electrochemistry of the excited electronic state. J Electrochem Soc 125:218C–226C

    Article  Google Scholar 

  2. Gerischer H, Willig F (1976) Reaction of excited dye molecules at electrodes. In: Topics in current chemistry, no 61, vol 61. Springer, pp 31–84

    Google Scholar 

  3. Memming R (1984) Electron transfer process with excited molecules at semiconductor electrodes. Prog Surf Sci 17:7–74

    Article  Google Scholar 

  4. Moser J (1887) Notiz über Verstärkung photoelektrischer Ströme dursch optische Sensibilisirung. Monatsh Chem 8:373

    Article  Google Scholar 

  5. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  6. Desilvestro J, Grätzel M, Kavan L, Moser J (1985) Highly efficient sensitization of titanium dioxide. J Am Chem Soc 107:2988–2990

    Article  Google Scholar 

  7. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663. doi:10.1021/cr900356p

  8. Jose R, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92(2):289–301. doi:10.1111/j.1551-2916.2008.02870.x

  9. Birkel A, Lee Y-G, Koll D, Meerbeek XV, Frank S, Choi MJ, Kang YS, Char K, Tremel W (2012) Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ Sci 5(1):5392–5400. doi:10.1039/C1EE02115J

  10. Bisquert J (2007) Hopping transport of electrons in dye-sensitized solar cells. J Phys Chem C 111(46):17163–17168. doi:10.1021/jp077419x

  11. Asbury JB, Ellingson RJ, Ghosh HN, Ferrere S, Nozik AJ, Lian T (1999) Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films. J Phys Chem B 103(16):3110–3119. doi:10.1021/jp983915x

  12. Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2002) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493. doi:10.1021/ja016561n

  13. Koops SE, O’Regan BC, Barnes PRF, Durrant JR (2009) Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J Am Chem Soc 131(13):4808–4818. doi:10.1021/ja8091278

  14. Katoh R, Furube A (2014) Electron injection efficiency in dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 20:1–16. doi:10.1016/j.jphotochemrev.2014.02.001

  15. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277. doi:10.1021/ar980112j

  16. Clifford JN, Palomares E, Nazeeruddin MK, Grätzel M, Durrant JR (2007) Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate. J Phys Chem C 111(17):6561–6567. doi:10.1021/jp067458t

    Article  Google Scholar 

  17. Daeneke T, Mozer AJ, Uemura Y, Makuta S, Fekete M, Tachibana Y, Koumura N, Bach U, Spiccia L (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134(41):16925–16928. doi:10.1021/ja3054578

    Article  Google Scholar 

  18. Feldt SM, Lohse PW, Kessler F, Nazeeruddin MK, Gratzel M, Boschloo G, Hagfeldt A (2013) Regeneration and recombination kinetics in cobalt polypyridine based dye-sensitized solar cells, explained using Marcus theory. Phys Chem Chem Phys 15(19):7087–7097. doi:10.1039/C3CP50997D

    Article  Google Scholar 

  19. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390. doi:10.1021/ja00067a063

    Article  Google Scholar 

  20. Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer C-H, Grätzel M (1999) Acid-base equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg Chem 38(26):6298–6305. doi:10.1021/ic990916a

    Article  Google Scholar 

  21. Ozawa H, Shimizu R, Arakawa H (2012) Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye. RSC Adv 2(8):3198–3200. doi:10.1039/C2RA01257J

    Article  Google Scholar 

  22. Hagberg DP, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun L (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Commun 21:2245–2247. doi:10.1039/B603002E

    Article  Google Scholar 

  23. Tian H, Yang X, Cong J, Chen R, Teng C, Liu J, Hao Y, Wang L, Sun L (2010) Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes Pigments 84(1):62–68. doi:10.1016/j.dyepig.2009.06.014

  24. Gabrielsson E, Ellis H, Feldt S, Tian H, Boschloo G, Hagfeldt A, Sun L (2013) Convergent/Divergent synthesis of a linker-varied series of dyes for dye-sensitized solar cells based on the D35 donor. Adv Energy Mater 3(12):1647–1656. doi:10.1002/aenm.201300367

    Article  Google Scholar 

  25. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132(46):16714–16724. doi:10.1021/ja1088869

    Article  Google Scholar 

  26. El-Zohry A, Orthaber A, Zietz B (2012) Isomerization and aggregation of the solar cell dye D149. J Phys Chem C 116(50):26144–26153. doi:10.1021/jp306636w

    Article  Google Scholar 

  27. Hong J, Lai H, Liu Y, Yuan C, Li Y, Liu P, Fang Q (2013) New organic dyes containing E- or Z-trifluoromethyl acrylic acid as the electron acceptors for dye-sensitized solar cell applications: an investigation of the effect of molecular configuration on the power conversion efficiency of the cells. RSC Adv 3(4):1069–1072. doi:10.1039/C2RA22195K

    Article  Google Scholar 

  28. Zietz B, Gabrielsson E, Johansson V, El-Zohry AM, Sun L, Kloo L (2014) Photoisomerization of the cyanoacrylic acid acceptor group—a potential problem for organic dyes in solar cells. Phys Chem Chem Phys 16(6):2251–2255. doi:10.1039/C3CP54048K

    Article  Google Scholar 

  29. Yum J-H, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser J-E, Yi C, Nazeeruddin MK, Grätzel M (2012) A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nat Commun 3:631. doi:http://www.nature.com/ncomms/journal/v3/n1/suppinfo/ncomms1655_S1.html

  30. Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P (2015) Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 137(11):3799–3802. doi:10.1021/jacs.5b01537

    Article  Google Scholar 

  31. Mathew S, Yella A, Gao P, Humphry-Baker R, CurchodBasile FE, Ashari-Astani N, Tavernelli I, Rothlisberger U, NazeeruddinMd K, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247. doi:10.1038/nchem.1861 http://www.nature.com/nchem/journal/v6/n3/abs/nchem.1861.html#supplementary-information

  32. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634. doi:10.1126/science.1209688

    Article  Google Scholar 

  33. Lan C-M, Wu H-P, Pan T-Y, Chang C-W, Chao W-S, Chen C-T, Wang C-L, Lin C-Y, Diau EW-G (2012) Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ Sci 5(4):6460–6464. doi:10.1039/C2EE21104A

    Article  Google Scholar 

  34. Kakiage K, Aoyama Y, Yano T, Oya K, J-i Fujisawa, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897. doi:10.1039/C5CC06759F

    Article  Google Scholar 

  35. Qin C, Numata Y, Zhang S, Islam A, Yang X, Sodeyama K, Tateyama Y, Han L (2013) A near-infrared cis-configured squaraine co-sensitizer for high-efficiency dye-sensitized solar cells. Adv Funct Mater 23(30):3782–3789. doi:10.1002/adfm.201203384

    Article  Google Scholar 

  36. Joly D, Pellejà L, Narbey S, Oswald F, Chiron J, Clifford JN, Palomares E, Demadrille R (2014) A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability. Sci Rep 4:4033. doi:10.1038/srep04033

    Article  Google Scholar 

  37. Hara K, Wang Z-S, Cui Y, Furube A, Koumura N (2009) Long-term stability of organic-dye-sensitized solar cells based on an alkyl-functionalized carbazole dye. Energy Environ Sci 2(10):1109–1114. doi:10.1039/B907486D

    Article  Google Scholar 

  38. Shi D, Cao Y, Pootrakulchote N, Yi Z, Xu M, Zakeeruddin SM, Grätzel M, Wang P (2008) New organic sensitizer for stable dye-sensitized solar cells with solvent-free ionic liquid electrolytes. J Phys Chem C 112(44):17478–17485. doi:10.1021/jp807191w

    Article  Google Scholar 

  39. Kuang D, Comte P, Zakeeruddin SM, Hagberg DP, Karlsson KM, Sun L, Nazeeruddin MK, Grätzel M (2011) Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. SoEn 85(6):1189–1194. doi:10.1016/j.solener.2011.02.025

  40. Chen C, Yang X, Cheng M, Zhang F, Sun L (2013) Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells. Chemsuschem 6(7):1270–1275. doi:10.1002/cssc.201200949

    Article  Google Scholar 

  41. Zhang L, Cole JM (2015) Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces 7(6):3427–3455. doi:10.1021/am507334m

    Article  Google Scholar 

  42. Ooyama Y, Inoue S, Nagano T, Kushimoto K, Ohshita J, Imae I, Komaguchi K, Harima Y (2011) Dye-sensitized solar cells based on donor-acceptor π-conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoring group. Angew Chem 123(32):7567–7571. doi:10.1002/ange.201102552

    Article  Google Scholar 

  43. Mao J, He N, Ning Z, Zhang Q, Guo F, Chen L, Wu W, Hua J, Tian H (2012) Stable dyes containing double acceptors without COOH as anchors for highly efficient dye-sensitized solar cells. Angew Chem Int Ed 51(39):9873–9876. doi:10.1002/anie.201204948

    Article  Google Scholar 

  44. Robert D, Victor Weber J (2000) Study of the adsorption if dicarboxylic acids on titanium dioxide in aqueous solution. Adsor 6:175–178

    Article  Google Scholar 

  45. Lim J, Kwon YS, Park S-H, Song IY, Choi J, Park T (2011) Thermodynamic control over the competitive anchoring of N719 dye on nanocrystalline TiO2 for improving photoinduced electron generation. Langmuir 27:14647–14653

    Article  Google Scholar 

  46. Ellis-Gibbings L, Johansson V, Walsh RB, Kloo L, Quinton JS, AG G (2012) Formation of N719 dye multilayers on dye sensitized solar cell photoelectrode surfaces investigated by direct determination of element concentration depth profiles. Langmuir 28:9431–9439

    Article  Google Scholar 

  47. Johansson V, Ellis-Gibbings L, Clarke T, Gorlov M, Andersson GG, Kloo L (2014) On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells. PCCP 16:711–718

    Article  Google Scholar 

  48. Liu P, Johansson V, Triksilana H, Rosdahl J, Andersson G, Kloo L (2016) EXAFS and NICIS spectroscopy studies on the dye-sensitised sensitized solar cell photoelectrode interface

    Google Scholar 

  49. Rienzo A, Mayor LC, Magnano G, Satterley CJ, Ataman E, Schnadt J, Schulte K, O’Shea JN (2010) X-ray absorption and photoemission spectroscopy of zinc protoporphyrin adsorbed on rutile TiO2(110) prepared by in situ electrospray deposition. J Chem Phys 132(8):084703. doi:10.1063/1.3336747

  50. Voïtchovsky K, Ashari-Astani N, Tavernelli I, Tétreault N, Rothlisberger U, Stellacci F, Grätzel M, Harms HA (2015) In situ mapping of the molecular arrangement of amphiphilic dye molecules at the TiO2 surface of dye-sensitized solar cells. ACS Appl Mater Interfaces 7(20):10834–10842. doi:10.1021/acsami.5b01638

    Article  Google Scholar 

  51. Ni J-S, Hung C-Y, Liu K-Y, Chang Y-H, Ho K-C, Lin K-F (2012) Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. J Colloid Interface Sci 386(1):359–365. doi:10.1016/j.jcis.2012.07.019

  52. Deng Y, Yuan W, Jia Z, Liu G (2014) H- and J-aggregation of fluorene-based chromophores. J Phys Chem B 118(49):14536–14545. doi:10.1021/jp510520m

    Article  Google Scholar 

  53. Cappel UB, Feldt SM, Schöneboom J, Hagfeldt A, Boschloo G (2010) The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells. J Am Chem Soc 132(26):9096–9101. doi:10.1021/ja102334h

    Article  Google Scholar 

  54. Ardo S, Sun Y, Staniszewski A, Castellano FN, Meyer GJ (2010) Stark effects after excited-state interfacial electron transfer at sensitized TiO2 nanocrystallites. J Am Chem Soc 132(19):6696–6709. doi:10.1021/ja909781g

    Article  Google Scholar 

  55. Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5(11):9180. doi:10.1039/c2ee22095d

    Article  Google Scholar 

  56. Yu Z, Vlachopoulos N, Gorlov M, Kloo L (2011) Liquid electrolytes for dye-sensitized solar cells. Dalton Trans 40(40):10289–10303. doi:10.1039/c1dt11023c

    Article  Google Scholar 

  57. Fujishima A, Honda A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  58. Tian H, Gabrielsson E, Lohse PW, Vlachopoulos N, Kloo L, Hagfeldt A, Sun L (2012) Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells. Energy Environ Sci 5:9752–9755

    Article  Google Scholar 

  59. Daeneke T, Uemura Y, Duffy NW, Mozer AJ, Koumura N, Bach U, Spiccia L (2012) Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. Adv Mater 24:1222–1225

    Article  Google Scholar 

  60. Yang W, Soderberg M, Eriksson AIK, Boschloo G (2015) Efficient aqueous dye-sensitized solar cell electrolytes based on a TEMPO/TEMPO + redox couple. RSC Adv 5:26706–26709

    Article  Google Scholar 

  61. Chen C, Yang X, Cheng M, Zhang F, Sun L (2013) Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells. Chemsuschem 6:1270–1275

    Article  Google Scholar 

  62. Agrell HG, Lindgren J, Hagfeldt A (2003) Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy. SoEn 75:169–180

    Google Scholar 

  63. Law C, Pathirana SC, Li X, Anderson AY, Barnes PRF, Listorti A, Ghaddar TH, O’Regan BC (2010) Water-based electrolytes for dye-sensitized solar cells. Adv Mater 22:4505–4509

    Article  Google Scholar 

  64. Tian H, Yu Z, Hagfeldt A, Kloo L, Sun L (2011) Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. J Am Chem Soc 133:9413–9422

    Article  Google Scholar 

  65. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. DTr:2655-2666

    Google Scholar 

  66. Jhong H-R, Wonga DS-H, Wana C-C, Wang Y-Y, Wei T-C (2009) A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem Commun 11:209–211

    Article  Google Scholar 

  67. Yu Z, Vlachopoulos N, Hagfeldt A, Kloo L (2013) Incompletely solvated ionic liquid mixtures as electrolyte solvents for highly stable dye-sensitized solar cells. RSC Adv 3:1896–1901

    Article  Google Scholar 

  68. Yamanaka N, Kawano R, Kubo W, Kitamura T, Wada Y, Watanabe M, Yanagida S (2005) Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem Commun 740–742

    Google Scholar 

  69. Högberg D, Soberats B, Uchida S, Yoshio M, Kloo L, Segawa H, Kato T (2014) Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chem Mater 26:6496–6502

    Article  Google Scholar 

  70. Högberg D, Soberats B, Yatagai R, Uchida S, Yoshio M, Kloo L, Segawa H, Kato T (2016) Liquid-crystalline dye-sensitized solar cells: design of two-dimensional molecular assemblies for efficient ion transport and thermal stability. Chem Mater 28:6493–6500

    Article  Google Scholar 

  71. Boschloo G, Gibson EA, Hagfeldt A (2011) Photomodulated voltammetry of iodide/triiodide redox electrolytes and its relevance to dye-sensitized solar cells. J Phys Chem Lett 2:3016–3020

    Article  Google Scholar 

  72. Cong J, Yang X, Hao Y, Kloo L, Sun L (2012) A highly efficient colourless sulfur/iodide-based hybrid electrolyte for dye-sensitized solar cells. RSC Adv 2:3625–3629

    Article  Google Scholar 

  73. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    Article  Google Scholar 

  74. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  Google Scholar 

  75. Kakiage K, Aoyama Y, Yano T, Oya K, J-i Fujisawa, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    Article  Google Scholar 

  76. Kashif MK, Axelson JC, Duffy NW, Forsyth CM, Chang CJ, Long JR, Spiccia L, Bach U (2012) A new direction in dye-sensitized solar cells redox mediator development. In situ fine-tuning of the cobalt(II)/(III) redox potential through lewis base interactions. J Am Chem Soc 134:16646–16653

    Article  Google Scholar 

  77. Kashif MK, Nippe M, Duffy NW, Forsyth CM, Chang CJ, Long JR, Spiccia L, Bach U (2013) Stable dye-sensitized solar cell electrolytes based on cobalt(II)/(III) complexes of a hexadentate pyridyl ligand. Angew Chem Int Ed 52:5527–5531

    Article  Google Scholar 

  78. Achari MB, Elumalai V, Vlachopoulos N, Safdari M, Gao J, Gardner JM, Kloo L (2013) A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-sensitized solar cells. PCCP 15:17419–17425

    Article  Google Scholar 

  79. Xiang W, Huang W, Bach U, Spiccia L (2013) Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte. Chem Commun 49:8997–8999

    Article  Google Scholar 

  80. Cong J, Hao Y, Boschloo G, Kloo L (2015) Electrolytes based on TEMPO-Co tandem redoxx systems outperform single redox systems in dye-sensitized solar cells. Chemsuschem 8:264–268

    Article  Google Scholar 

  81. Cheng M, Yang X, Zhang F, Zhao J, Sun L (2012) Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple. Angew Chem Int Ed 51:9896–9899

    Article  Google Scholar 

  82. Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P (2011) High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem Commun 47:4376–4378

    Article  Google Scholar 

  83. Cong J, Kinschel D, Daniel Q, Safdari M, Gabrielsson E, Chen H, Svensson PH, Sun L, Kloo L (2016) Bis(1,1-bis(2-pyridyl)ethane)copper(I/II) as an efficient redox couple for liquid dye-sensitized solar cells. J Mater Chem A 4:14550–14554

    Article  Google Scholar 

  84. Hoffeditz WL, Katz MJ, Deria P, Cutsail GE III, Pellin MJ, Farha OK, Hupp JT (2016) One electron changes everything. A multispecies copper redox shuttle for dye-sensitized solar cells. J Phys Chem C 120:3731–3740

    Article  Google Scholar 

  85. Abe R, Higashi M, Domen K (2011) Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator. Chemsuschem 4(2):228–237. doi:10.1002/cssc.201000333

    Article  Google Scholar 

  86. Heo N, Jun Y, Park JH (2013) Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells. Sci Rep 3 Article number 1712

    Google Scholar 

  87. Yu S, Ahmadi S, Sun C, Palmgren P, Hennies F, Zuleta M, Göthelid M (2010) 4-tert-butyl pyridine bond site and band bending on TiO2(110). J Phys Chem C 114:2315–2320

    Article  Google Scholar 

  88. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  Google Scholar 

  89. Yu Z, Gorlov M, Nissfolk J, Boschloo G, Kloo L (2010) Investigation of Iodine Concentration Effects in Electrolytes for Dye-Sensitized Solar Cells. J Phys Chem C 114:10612–10620

    Article  Google Scholar 

  90. Gao J (2016) Electrolyte-based dynamics: fundamental studies for stable liquid dye-sensitized solar cells. KTH Royal Institute of Technology

    Google Scholar 

  91. Gao J, Yang W, Pazoki M, Boschloo G, Kloo L (2015) Cation-dependent photostability of Co(II/III)-mediated dye-sensitized solar cells. J Phys Chem C 119:24704–24713

    Article  Google Scholar 

  92. Gao J, Achari MB, Kloo L (2014) Long-term stability for cobalt-based dyesensitized solar cells obtained by electrolyte optimization. Chem Commun 50:6249–6251

    Article  Google Scholar 

  93. Wu M, Ma T (2014) Recent progress of counter electrode catalysts in dye-sensitized solar cells. J Phys Chem C 118(30):16727–16742. doi:10.1021/jp412713h

    Article  Google Scholar 

  94. Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Gratzel M (2012) Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ Sci 5(3):6089–6097. doi:10.1039/C2EE03005E

    Article  Google Scholar 

  95. Tian H, Yu Z, Hagfeldt A, Kloo L, Sun L (2011) Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. J Am Chem Soc 133(24):9413–9422

    Article  Google Scholar 

  96. Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S (2008) High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J Power Sour 181(1):172–176. doi:10.1016/j.jpowsour.2008.03.029

  97. Xia J, Chen L, Yanagida S (2011) Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J Mater Chem 21(12):4644–4649. doi:10.1039/C0JM04116E

    Article  Google Scholar 

  98. Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X-Z (2011) In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5(5):3795–3799. doi:10.1021/nn200133g

    Article  Google Scholar 

  99. Li Z, Ye B, Hu X, Ma X, Zhang X, Deng Y (2009) Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell. Electrochem Commun 11(9):1768–1771. doi:10.1016/j.elecom.2009.07.018

  100. He J, Lindström H, Hagfeldt A, Lindquist S-E (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103(42):8940–8943. doi:10.1021/jp991681r

    Article  Google Scholar 

  101. Qin P, Wiberg J, Gibson EA, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L (2010) Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells. J Phys Chem C 114(10):4738–4748. doi:10.1021/jp911091n

    Article  Google Scholar 

  102. Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv Mater 22(15):1759–1762. doi:10.1002/adma.200903151

    Article  Google Scholar 

  103. Nattestad A, Mozer AJ, Fischer MKR, Cheng YB, Mishra A, Bauerle P, Bach U (2010) Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat Mater 9(1):31–35. http://www.nature.com/nmat/journal/v9/n1/suppinfo/nmat2588_S1.html

  104. Tian H, Oscarsson J, Gabrielsson E, Eriksson SK, Lindblad R, Xu B, Hao Y, Boschloo G, Johansson EMJ, Gardner JM, Hagfeldt A, Rensmo H, Sun L (2014) Enhancement of p-type dye-sensitized solar cell performance by supramolecular assembly of electron donor and acceptor. Sci Rep 4:4282. doi:10.1038/srep04282. http://www.nature.com/srep/2014/140307/srep04282/abs/srep04282.html#supplementary-information

  105. Wood CJ, Summers GH, Gibson EA (2015) Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design. Chem Commun 51(18):3915–3918. doi:10.1039/C4CC10230D

    Article  Google Scholar 

  106. Farré Y, Zhang L, Pellegrin Y, Planchat A, Blart E, Boujtita M, Hammarström L, Jacquemin D, Odobel F (2016) Second generation of diketopyrrolopyrrole dyes for NiO-based dye-sensitized solar cells. J Phys Chem C 120(15):7923–7940. doi:10.1021/acs.jpcc.5b12489

    Article  Google Scholar 

  107. Favereau L, Warnan J, Pellegrin Y, Blart E, Boujtita M, Jacquemin D, Odobel F (2013) Diketopyrrolopyrrole derivatives for efficient NiO-based dye-sensitized solar cells. Chem Commun 49(73):8018–8020. doi:10.1039/C3CC44232B

    Article  Google Scholar 

  108. Park JY, Jang BY, Lee CH, Yun HJ, Kim JH (2014) Influence of the anchoring number in a carbazole-based photosensitizer on the photovoltaic performance of p-type NiO dye sensitized solar cells. RSC Adv 4(106):61248–61255. doi:10.1039/C4RA08271K

    Article  Google Scholar 

  109. Shao Z, Pan X, Chen H, Tao L, Wang W, Ding Y, Pan B, Yang S, Dai S (2014) Polymer based photocathodes for panchromatic tandem dye-sensitized solar cells. Energy Environ Sci. doi:10.1039/C4EE01315H

    Google Scholar 

  110. Gennari M, Légalité F, Zhang L, Pellegrin Y, Blart E, Fortage J, Brown AM, Deronzier A, Collomb M-N, Boujtita M, Jacquemin D, Hammarström L, Odobel F (2014) Long-lived charge separated state in NiO-based p-type dye-sensitized solar cells with simple cyclometalated iridium complexes. J Phys Chem Lett 5(13):2254–2258. doi:10.1021/jz5009714

    Article  Google Scholar 

  111. Ji Z, Natu G, Huang Z, Kokhan O, Zhang X, Wu Y (2012) Synthesis, photophysics, and photovoltaic studies of ruthenium cyclometalated complexes as sensitizers for p-type NiO dye-sensitized solar cells. J Phys Chem C 116(32):16854–16863. doi:10.1021/jp303909x

    Article  Google Scholar 

  112. Ji Z, Natu G, Wu Y (2013) Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells. ACS Appl Mater Interfaces 5(17):8641–8648. doi:10.1021/am402263q

    Article  Google Scholar 

  113. Gibson EA, Smeigh AL, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström L (2009) A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew Chem Int Ed 48(24):4402–4405. doi:10.1002/anie.200900423

  114. Xu X, Zhang B, Cui J, Xiong D, Shen Y, Chen W, Sun L, Cheng Y, Wang M (2013) Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale 5(17):7963–7969. doi:10.1039/C3NR02169F

    Article  Google Scholar 

  115. Powar S, Daeneke T, Ma MT, Fu D, Duffy NW, Götz G, Weidelener M, Mishra A, Bäuerle P, Spiccia L, Bach U (2013) Highly efficient p-type dye-sensitized solar cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) electrolytes. Angew Chem Int Ed 52(2):602–605. doi:10.1002/anie.201206219

    Article  Google Scholar 

  116. Perera IR, Daeneke T, Makuta S, Yu Z, Tachibana Y, Mishra A, Bäuerle P, Ohlin CA, Bach U, Spiccia L (2015) Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. Angew Chem Int Ed 54(12):3758–3762. doi:10.1002/anie.201409877

  117. Powar S, Bhargava R, Daeneke T, Götz G, Bäuerle P, Geiger T, Kuster S, Nüesch FA, Spiccia L, Bach U. Thiolate/disulfide based electrolytes for p-type and tandem dye-sensitized solar cells. Electrochim Acta. doi:10.1016/j.electacta.2015.09.026

Download references

Acknowledgements

We greatly thank Dr. Nick Vlachopoulos at École polytechnique fédérale de Lausanne (EPFL) for kindly discussion on DSSCs historical part. We also gratefully acknowledge financial support from The Knut and Alice Wallenberg Foundation and The Swedish Energy Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haining Tian or Lars Kloo .

Editor information

Editors and Affiliations

Appendix—Abbreviations

Appendix—Abbreviations

DSSCs

Dye-sensitized solar cells

n-DSSCs

n-type dye-sensitized solar cells

p-DSSCs

p-type dye-sensitized solar cells

t-DSSCs

Tandem dye-sensitized solar cells

CCD

Charge-coupled device

CB

Conduction band

IR

Infrared

FTO

Fluorine-doped tin oxide

CE

Counter electrode

R/R

Redox couple

S

Ground state dye

S*

Excited state dye

ES*/S+/ES*/S-

Energy level of the excited state dye

ES/S+

Energy level of the oxidized ground state

ES/S-

Energy level of the reduced state

CV

Cyclic voltammetry

HOMO

The Highest Occupied Molecular Orbital

LUMO

The Lowest Unoccupied Molecular Orbital

ΔE 0–0

Energy of the 0–0 transition

PL

Photoluminescence

η

The overall light-to-electricity conversion efficiency

J SC

Short-circuit photocurrent

V OC

Open-circuit voltage

FF

Fill factor

P in

Intensity of the incident light

Pmax

Maximum power output

IPCE

Incident photon-to-current conversion efficiency

ER/R+/Eredox

Energy level (redox potential) of the electrolyte redox couple

EQE

External quantum efficiency

J SC (λ)

Short-circuit current generated under monochromatic light

Φλ

Photon flux

λ

Light wavelength

e

Elementary charge

\( \eta \) A

Light harvesting efficiency

\( \eta \) inj

Electron injection efficiency

\( \eta \) reg

Dye regeneration efficiency

\( \eta \) col

Charge collection efficiency

kinj

Rate constant of electron injection

ks*

Rate constant of excited state relaxation rate

TA

Transient absorption

fs

Femtosecond

ps

Picosecond

ECB

Energy of the CB edge

−ΔG inj

Free energy difference between ES*/S+ and ECB

kreg

Rate constants of regeneration

krec

Rate constants of recombination

−ΔG reg )

Free energy difference between ES/S+ and ER/R+

τ tr

Electron transport time

τ rec

Charge recombination time

IMVS

Intensity-Modulated Photovoltage Spectroscopy

IMPS

Intensity-Modulated Photocurrent Spectroscopy

R rec

Recombination resistance

R tr

Transport resistant

MLCT

Metal-to-ligand charge transfer

D

Electron donor

π

Conjugated linker

A

Electron acceptor

CDCA

Chenodeoxycholic acid

DMPII

1,2-dimethyl-3-n-propylimidazolium iodide

TBP

4-tert-butylpyridine

Co3+/2+ (bpy)3

Cobalt(III/II) tris(2,2′-bipyridine)

CPDT

Cyclopentadithiophene

DCRD

2-(1,1-dicyanomethylene)rhodanine

SAM

Self-assembled monolayer

AFM

Atomic force microscopy

QCMD

Quartz microbalance with dissipation technique

MD

Molecular dynamics

NICISS

Neutral impact collision ion scattering spectroscopy

XPS

X-ray photoelectron spectroscopy (XPS)

E 0

Standard electrode potential

R

Ideal gas constant

T

Absolute temperature

n

Number of electrons

F

Faraday constant

a i

Represents the activities

PEDOT

Poly(3,4-Ethylenedioxythiophene)

PPy

polypyrrole

PANI

Polyaniline

VB

Valence band

NHE

Normal Hydrogen Electrode

∆V

Theoretical maximum photovoltage

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tian, H., Kloo, L. (2018). Liquid Dye-Sensitized Solar Cells. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics