RNA: Structure, Prediction, and Visualization Tools

  • Dolly Sharma
  • Shailendra Singh
  • Trilok Chand
  • Pardeep Kumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 624)


RNA has been found to be associated with many diseases, especially in humans. To understand the correlation of RNA with disease, an individual needs to understand its structure. As prediction of three-dimensional structure of RNA is complex and costly affair, researchers are focusing on the secondary structure of RNA. RNA secondary structure has been predicted by various algorithms, and various tools have been developed for its automatic prediction. Several components of RNA secondary structure have been acknowledged, namely hairpin loop, stacked pair, bulge loop, internal loop, and junction. The motive of this paper is to explore various RNA structures, techniques prediction of RNA secondary structure, and visualizations tools.


RNA RNA secondary structure prediction Visualization tools 


  1. 1.
    T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics, 2000(104): 45–62. Google Scholar
  2. 2.
    Pardeep Kumar, Dolly Sharma, String Algorithms for Counting DNA Nucleotides, Transcribing DNA to RNA and Complementing a Strand of DNA, International Conference on Data Acquisition Transfer Processing and Management (ICDATPM-2014), Lingaya’s University, Faridabad, 28–29 March, 2014, pg no. 244–247.Google Scholar
  3. 3.
    Jacques Cohen. Bioinformatics—An Introduction for Computer Scientists, ACM Computing Surveys, 2004(36):2, 122–158.Google Scholar
  4. 4.
    Michael T. Dixon and David M. Hillis. Ribosomal RNA Secondary Structure: Compensatory Mutations and Implications for Phylogenetic Analysis, University of Chicago. Mol. Bid. Evol. 1993(10):1, 256–267.Google Scholar
  5. 5.
    Alexander Rich and U. L. Rajbhandary. Transfer RNA: Molecular Structure, Sequence, and Properties. Annual Review of Biochemistry. 1976(45), 805–860.Google Scholar
  6. 6.
    Svetlana A. Shabalina, Aleksey Y. Ogurtsov and Nikolay A. Spiridonov, A periodic pattern of mRNA secondary structure created by the genetic code, Nucleic Acids Research, National Center for Biotechnology Information, 2006(34) :8.Google Scholar
  7. 7.
    Sean R. Eddy. Non-Coding RNA Genes and the Modern RNA World, Macmillan Magazines Ltd, 2001 (2).Google Scholar
  8. 8.
    Douglas R. Tanner, Jonathan D. Dewey, Mickey R. Miller, and Allen R. Buskirk. Genetic Analysis of the Structure and Function of Transfer Messenger RNA Pseudoknot, The Journal Of Biological Chemistry, 2006 (281):15, 10561–10566.Google Scholar
  9. 9.
    Douglass J. Forbes, Thomas B. Kornberg, and Marc W. Kirschner, Small Nuclear RNA Transcription and Ribonucleoprotein Assembly in Early Xenopus Development, The Journal Of Cell Biology, 1983(97).Google Scholar
  10. 10.
    Shi-Lung Lin, Joseph D. Miller, and Shao-Yao Ying, Intronic MicroRNA (miRNA), Journal of Biomedicine and Biotechnology, 2006(2006), 1–13.Google Scholar
  11. 11.
    Richard W. Carthew, Erik J. Sontheimer, Origins and Mechanisms of miRNAs and siRNAs, Northwestern University, Cell, 2009(136), 642–655.Google Scholar
  12. 12.
    Ting-Ting Liua, Danmeng Zhua, Wei Chena, Wei Dengb, Hang Hea, Guangming Hea, Baoyan Baib, Yijun Qic, Runsheng Chenb and Xing Wang Deng, A Global Identification and Analysis of Small Nucleolar RNAs and Possible Intermediate-Sized Non-Coding RNAs, Molecular Plant Advance Access published September 17, 2012.Google Scholar
  13. 13.
    Stuti Gupta, Ravindra Pal Singh, Nirav Rabadia, Gaurang Patel, Hiten Panchal, ANTISENSE TECHNOLOGY, International Journal of Pharmaceutical Sciences Review and Research, 2011 (9):2, Article-007.Google Scholar
  14. 14.
    Christian Zwieb, Rob W. Van Nues, Magnus Alm Rosenblad, Jeremy D. Brown, And Tore Samuelsson, A nomenclature for all signal recognition particle RNAs, RNA Society, RNA Society, RNA, 2005(11):1.Google Scholar
  15. 15.
    Anne Condon, Problems on RNA Secondary Structure Prediction and Design, Chapter, Automata, Languages and Programming, Volume 2719 of the series Lecture Notes in Computer Science, 2003(2719): 22–32.Google Scholar
  16. 16.
    Shubhra Sankar Ray and Sankar K. Pal, RNA Secondary Structure Prediction, Using Soft Computing, IEEE/ACM Transactions On Computational Biology And Bioinformatics, 2013(10):1.Google Scholar
  17. 17.
    Donna K. Hendrix, Steven E. Brenner and Stephen R. Holbrook RNA structural motifs: building blocks of a modular biomolecule, Quarterly Reviews of Biophysics. 2006(38) :3, 221–243.Google Scholar
  18. 18.
    Dolly Sharma, Shailendra Singh, Trilok Chand, Formal Grammar Algorithms for Prediction of RNA Secondary Structure including Pseudoknot, International Conference on Data Acquisition Transfer Processing and Management (ICDATPM-2014), Lingaya’s University, Faridabad, 28–29 March, 2014, pg no. 206–208 Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981).Google Scholar
  19. 19.
    Dolly Sharma, Shailendra Singh, Trilok Chand, RNA Secondary Structure Prediction Algorithms Including Pseudoknots. 9 (3):268–283, 2013.Google Scholar
  20. 20.
    I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures (vienna rna package). Monatshe. Chem. 1994 (125), 167–188.Google Scholar
  21. 21.
    M. Z. et al. Algorithms and thermodynamics for rna secondary structure prediction: A practical guide in rna biochemistry and biotechnology. In NATO ASI Series 1999, Kluwer Academic Publishers, 1999.Google Scholar
  22. 22.
    J. Ruan, G. Stormo, and W. Zhang. An iterated loop matching approach to the prediction of rna secondary structures with pseudoknots. Bioinformatics, 2004 (20):1, 58–66.Google Scholar
  23. 23.
    K. C. Wiese, A. Deschenes, and E. Glen. Permutation based rna secondary structure prediction via a genetic algorithm. In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, editors, Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, pages 335–342, Canberra, 8–12 December 2003. IEEE Press.Google Scholar
  24. 24.
    E. Rivas and S. Eddy. A dynamic programming algorithm for rna structure prediction including pseudoknots. Journal of Molecular Biology, 285(5):2053–2068, 1999.Google Scholar
  25. 25.
    E. Rivas and S. R. Eddy. The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics, 16(4):334–340, 2000.Google Scholar
  26. 26.
    B. Knudsen and J. Hein. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics, 15:446–454, 1999.Google Scholar
  27. 27.
    Smith, Temple F. & Waterman, Michael S. Identification of Common Molecular Subsequences. Journal of Molecular Biology. 147: 195–197, 1981.Google Scholar
  28. 28.
    Needleman, Saul B. & Wunsch, Christian D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology. 48 (3): 443–53, 1970.Google Scholar
  29. 29.
    Arthur L. Delcher, Adam Phillippy, Jane Carlton, and Steven L. Salzberg. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. Vol 30: 11, 2478–2483, 2002.Google Scholar
  30. 30.
    R. C. G. Holland, T. A. Down, M. Pocock, A. Prlić, D. Huen, K. James, S. Foisy, A. Dräger, A. Yates, M. Heuer and M. J. Schreiber. BioJava: an open-source framework for bioinformatics. Bioinformatics, 24:18, 2096–2097, 2008.Google Scholar
  31. 31.
    John Gómez, Leyla J. García, Gustavo A. Salazar, Jose Villaveces, Swanand Gore, Alexander García, Maria J. Martín, Guillaume Launay, Rafael Alcántara, Noemi del-Toro, Marine Dumousseau, Sandra Orchard, Sameer Velankar, Henning Hermjakob, Chenggong Zong, Peipei Ping, Manuel Corpas and Rafael C. Jiménez. BioJS: an open source JavaScript framework for biological data visualization. Bioinformatics, vol 29:8, 1103–1104, 2013.Google Scholar
  32. 32.
  33. 33.
    Ola Spjuth Email author, Tobias Helmus, Egon L Willighagen, Stefan Kuhn, Martin Eklund, Johannes Wagener, Peter Murray-Rust, Christoph Steinbeck and Jarl ES Wikberg. Bioclipse: an open source workbench for chemo- and bioinformatics. BMC Bioinformatics vol 8:59, 1–10, 2007.Google Scholar
  34. 34.
    Konstantin Okonechnikov, Olga Golosova, Mikhail Fursov. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, vol 28:8, 1166–1167, 2012.Google Scholar
  35. 35.
    Shanrong Zhao, Li Xi, Jie Quan, Hualin Xi, Ying Zhang, David von Schack, Michael Vincent and Baohong Zhang. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive, visualization. BMC Genomics vol 17:39, 1–15, 2016.Google Scholar
  36. 36.
    Mirela Andronescu, Rosalía Aguirre-Hernández, Anne Condon and Holger H. Hoos. RNA soft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Research, vol 31: 13, 3416–3422, 2003.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dolly Sharma
    • 1
  • Shailendra Singh
    • 1
  • Trilok Chand
    • 1
  • Pardeep Kumar
    • 2
  1. 1.Department of Computer SciencePEC University of TechnologyChandigarhIndia
  2. 2.School of Computer ScienceLingaya’s UniversityFaridabadIndia

Personalised recommendations