Skip to main content

Promising Retrofit Technologies for Nonconventional Distillation Sequence

  • Chapter
  • First Online:
Advances in Distillation Retrofit
  • 765 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian T, Bessling B, Hallmann H, Niekerken J (2000) DE 19860598

    Google Scholar 

  • AEA Technology (2000) Reactive distillation.

    Google Scholar 

  • Agrawal R, Fidkowski ZT (1999) New thermally coupled schemes for ternary distillation. AIChE J. 45:485–496

    Article  CAS  Google Scholar 

  • Agreda VH, Partin LR, Heise WH (1990) High-purity methyl acetate via reactive distillation. Chem Eng Prog. 86:40–46

    CAS  Google Scholar 

  • Almeida-Rivera CP, Swinkels PLJ, Grievink J (2004) Designing reactive distillation processes: present and future. Comput Chem Eng. 28:1997–2020

    Article  CAS  Google Scholar 

  • Altman E, Stefanidis GD, Gerven Tv, Stankiewicz AI (2010) Process intensification of reactive distillation for the synthesis of n-propyl propionate: the effects of microwave radiation on molecular separation and esterification reaction. Ind Eng Chem Res. 49:10287–10296

    Article  CAS  Google Scholar 

  • Amminudin KA, Smith R (2001) Design and optimization of fully thermally coupled distillation columns. Part 2: application of dividing wall columns in retrofit. Chem Eng Res Des. 79:716–724

    Article  CAS  Google Scholar 

  • Babi DK, Gani R (2014) Hybrid distillation schemes: design, analysis, and application. In: Gorak A, Sorensen E (eds) Distillation: fundamentals and principles, 1st edn. Elsevier, New York, pp 225–270.

    Google Scholar 

  • Behrens M, Olujic Z, Jansens PJ (2006) Combining reaction with distillation: hydrodynamic and mass transfer performance of modular catalytic structured packings. Chem Eng Res Des 84:381–389

    Article  CAS  Google Scholar 

  • Beneke, Peters M, Glasser D et al (2013) Understanding distillation using column profile maps. Wiley, Hoboken

    Google Scholar 

  • Brambilla A (2014) Distillation control and optimization: operation fundamentals through software control. McGraw-Hill Professional, New York

    Google Scholar 

  • Bravo-Bravo C, Segovia-Hernandez J, Gutierrez-Antonio C et al (2010) Extractive dividing wall column: design and optimization. Ind Eng Chem Res. 49:3672–3688

    Article  CAS  Google Scholar 

  • Buchaly C, Kreis P, Górak A (2007) Hybrid separation processes—combination of reactive distillation with membrane separation. Chem Eng Process. 46:790–799

    Article  CAS  Google Scholar 

  • Carmo MJ, Gubulin JC (1997) Ethanol-water adsorption on commercial 3A zeolites: kinetic and thermodynamic data. Braz J Chem Eng. 14:1–10

    Article  Google Scholar 

  • Cheng K, Wang SJ, Wong DSH (2013) Steady-state design of thermally coupled reactive distillation process for the synthesis of diphenyl carbonate. Comput Chem Eng. 52:262–271

    Article  CAS  Google Scholar 

  • DeGarmo JL, Parulekar VN, Pinjala V (1992) Consider reactive distillation. Chem Eng Prog. 88(3):43

    CAS  Google Scholar 

  • Demesa AG, Laari A, Tirronen E et al (2015) Comparison of solvents for the recovery of low-molecular carboxylic acids and furfural from aqueous solutions. Chem Eng Res Des. 93:531–540

    Article  CAS  Google Scholar 

  • Doherty MF, Malone MF (2001) Conceptual design of distillation systems. Chemical engineering series. McGraw-Hill, New York

    Google Scholar 

  • Drioli E, Brunetti A, Profio GD, Barbieri G (2012) Process intensification strategies and membrane engineering. Green Chem. 14:1561–1572

    Article  CAS  Google Scholar 

  • Drioli E, Curcio E (2007) Membrane engineering for process intensification: a perspective. J Chem Technol Biotechnol. 82:223–227

    Article  CAS  Google Scholar 

  • Emtir M, Etoumi A (2009) Enhancement of conventional distillation configurations for ternary mixtures separation. Clean Techn Environ Policy 11:123–131

    Article  CAS  Google Scholar 

  • Ennenbach F, Kolbe B, Ranke U (2000) Divided wall columns - a novel distillation concept. Petrol Techno Quart 5:97–103

    Google Scholar 

  • Fidkowski Z, Krolikowski L (1986) Thermally coupled system of distillation columns: optimization procedure. AIChE J. 32:537–546

    Article  CAS  Google Scholar 

  • Fidkowski Z, Krolikowski L (1987) Minimum energy requirements of thermally coupled distillation systems. AIChE J. 33:643–654

    Article  CAS  Google Scholar 

  • Fontalvo J, Cuellar P, Timmer JMK et al (2005) Comparing pervaporation and vapor permeation hybrid distillation processes. Ind Eng Chem Res. 44:5259–5266

    Article  CAS  Google Scholar 

  • Fontalvo J, Keurentjes JTF (2015) A hybrid distillation–pervaporation system in a single unit for breaking distillation boundaries in multicomponent mixtures. Chem Eng Res Des. 99:158–164

    Article  CAS  Google Scholar 

  • Gebreslassie BH, Diwekar UM (2015) Efficient ant colony optimization for computer aided molecular design: case study solvent selection problem. Comput Chem Eng. 78:1–9

    Article  CAS  Google Scholar 

  • Gelbein AP, Buchholz M (1991) EP 428265A1

    Google Scholar 

  • Genduso G, Amelio A, Colombini E, Luis P, Degreve J, Van der Bruggen B (2016) Retrofitting of extractive distillation columns with high flux, low separation factor membranes: A way to reduce the energy demand? Chem Eng Res Des. 109:127–140

    Article  CAS  Google Scholar 

  • Ghosh TK, Lin H-D, Hines AL (1993) Hybrid adsorption-distillation process for separating propane and propylene. Ind Eng Chem Res. 32:2390–2399

    Article  CAS  Google Scholar 

  • Gil ID, Botja DC, Ortiz P et al (2009) Extractive distillation of acetone/methanol mixture using water as entrainer. Ing Eng Chem Res. 48:4858–4865

    Article  CAS  Google Scholar 

  • Glinos KN, Malone MF (1985) Design of sidestream distillation columns. Ind Eng Chem Process Des Dev. 24:822–828

    Article  CAS  Google Scholar 

  • Glinos K, Malone MF (1988) Optimality regions for complex column alternatives in distillation systems. Chem Eng Res Des. 66:229–240

    CAS  Google Scholar 

  • Glinos KN, Nikolaides IP, Malone MF (1986) New complex column arrangements for ideal distillation. Ind Eng Chem Process Des. Dev. 25:694–699

    Article  CAS  Google Scholar 

  • Gorak A, Stankiewicz A (2011) Intensified reaction and separation systems. Annu Rev Chem Biomol Eng. 2:431–451

    Article  CAS  Google Scholar 

  • Guedes BP, Feitosa MF, Vasconcelos LS et al (2007) Sensitivity and dynamic behavior analysis of an industrial azeotropic distillation column. Sep Purif Technol. 56:270–277

    Article  CAS  Google Scholar 

  • Gutiérrez-Guerra R, Segovia-Hernández JG, Hernández S (2009) Reducing energy consumption and CO2 emissions in extractive distillation. Chem Eng Res Des 87:145–152

    Article  CAS  Google Scholar 

  • Harmsen GJ (2007) Reactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operation. Chem Eng Process. 46:774–780

    Article  CAS  Google Scholar 

  • Harper PM, Gani R, Kolar P et al (1999) Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilib 158–160:337–347

    Article  Google Scholar 

  • Harwardt A, Marquardt W (2012) Heat-integrated distillation columns: vapor recompression or internal heat integration? AIChE J. 58:3740–3750

    Article  CAS  Google Scholar 

  • Holtbruegge J, Heile S, Lutze P et al (2013a) Synthesis of dimethyl carbonate and propylene glycol in a pilot-scale reactive distillation column: experimental investigation, modeling and process analysis. Chem Eng J. 234:448–463

    Article  CAS  Google Scholar 

  • Holtbruegge J, Wierschem M, Steinruecken S et al (2013b) Experimental investigation, modeling and scale-up of hydrophilic vapor permeation membranes: separation of azeotropic dimethyl carbonate/methanol mixtures. Sep Purif Technol. 118:862–878

    Article  CAS  Google Scholar 

  • Hostrup M, Harper PM, Gani R (1999) Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput Chem Eng. 23(10):1395–1414

    Article  CAS  Google Scholar 

  • Hsu K-Y, Hsiao Y-C, Chien I-L (2010) Design and control of dimethyl carbonate−methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process. Ind Eng Chem Res. 49(2):735–749

    Article  CAS  Google Scholar 

  • Huang K, Iwakabe K, Nakaiwa M et al (2005) Towards further internal heat integration in design of reactive distillation columns – Part I: the design principles. Chem Eng Sci. 4901–4914:60

    Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW et al (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol. 62:1–21

    Article  CAS  Google Scholar 

  • Humbird D, Davis R, Tao L, et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute–acid pretreatment and enzymatic hydrolysis of corn stover. Nnational renewable energy laboratory, Colorado

    Google Scholar 

  • Hutchings GJ, Nicolaides CP (1992) Scurrell, developments in the production of methyl tert-butyl ether. Catal Today 15:23–49

    Article  CAS  Google Scholar 

  • Ibarra-Sánchez JdJ, Segovia-Hernández JG (2010) Reducing energy consumption and CO2 emissions in extractive distillation: Part II. Dynamic behavior. Chem Eng Res Des. 88:135–145

    Article  CAS  Google Scholar 

  • Iglesias M, Orge B, Marino G et al (1999) Vapor−liquid equilibria for the ternary system acetone + methanol + water at 101.325 kPa. J Chem Eng Data 44:661–665

    Article  CAS  Google Scholar 

  • Jana K (2014) Advances in heat pump assisted distillation column: a review. Energ Convers Manage. 77:287–297

    Article  CAS  Google Scholar 

  • Jong WD, Marcotullio G (2010) Overview of biorefineries based on co-production of furfural, Existing concepts and novel developments. Int J Chem React Eng. 8:1–24

    Google Scholar 

  • Karunanithi AT, Achenie LEK, Gani R (2005) A new decomposition−based computer−aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures. Ind Eng Chem Res. 44(13):4785–4797

    Article  CAS  Google Scholar 

  • Keller T (2014) Reactive distillation. In: Górak A, Olujic Z (eds) Distillation: equipment and processes, 1st edn. Elsevier, Oxford, pp 261–294

    Chapter  Google Scholar 

  • Kiss AA (2013) Advanced distillation technologies: design, control and applications, 1st edn. Wiley, West Sussex

    Book  Google Scholar 

  • Kiss AA, Bildea CS (2011) A control perspective on process intensification in dividing wall columns. Chem Eng Process. 50:281–292

    Article  CAS  Google Scholar 

  • Knapp JP, Doherty MF (1992) A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures. Ind Eng Chem Res. 31:346–357

    Article  CAS  Google Scholar 

  • Kolbe B, Wenzel S (2004) Novel distillation concepts using one-shell columns. Chem Eng Process. 43:339–346

    Article  CAS  Google Scholar 

  • Kotai B, Lang P, Modla G (2007) Batch extractive distillation as a hybrid process: separation of minimum boiling azeotropes. Chem Eng Sci. 62:6816–6826

    Article  CAS  Google Scholar 

  • Kreis P, Górak A (2006) Process analysis of hybrid separation processes: combination of distillation and pervaporation. Chem EngRes Des 84:595–600

    CAS  Google Scholar 

  • Lee HY, Jan CH, Chien IL et al (2010) Feed-splitting operating strategy of a reactive distillation column for energy-saving production of butyl propionate. J Taiwan Inst Chem Eng. 41:403–413

    Article  CAS  Google Scholar 

  • Lee MY, Minh LQ, Long NVD et al (2016) Retrofit of side stream columns to dividing wall columns, with a case study of industrial application, in gade pandu rangaiah. Chemical Process Retrofitting and Revamping Techniques and Applications. Wiley, West Sussex

    Google Scholar 

  • Lee SK, Shin JH, Lee JK (2011) Divided wall distillation column for producing high purity normal butanol, and normal butanol distillation method. U.S. Patent US2011/0303526, 15 December

    Google Scholar 

  • Lei Z, Chen B, Ding Z (2005) Special distillation processes. Elsevier, Amsterdam

    Google Scholar 

  • Li M, Harten PF, Cabezas H (2002) Experiences in designing solvents for the environment. Ind Eng Chem Res. 41(23):5867–5877

    Article  CAS  Google Scholar 

  • Lipnizki F, Field RW, Ten PK (1999) Pervaporation-based hybrid process: a review of process design, applications andeconomics. J Membr Sci 153:183–210

    Article  CAS  Google Scholar 

  • Long NVD, Lee MY (2011) Improved energy efficiciency in debottlenecking using a fully thermally coupled distillation column. AsiaPac J Chem Eng. 6:338–348

    Google Scholar 

  • Long NVD, Lee MY (2013a) Optimal retrofit of a side stream column to a dividing wall column for energy efficiency maximization. Chem Eng Res Des. 91:2291–2298

    Article  CAS  Google Scholar 

  • Long NVD, Lee MY (2013b) Optimal retrofit design of extractive distillation to energy efficient thermally couple distillation scheme. AIChE J. 59:1175–1182

    Article  CAS  Google Scholar 

  • Long NVD, Lee MY (2014) Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency. J Chem Eng Japan 47:87–108

    Article  CAS  Google Scholar 

  • Long NVD, Lee JT, Koo KK, Luis P, Lee MY (2017) Recent progress and novel applications in enzymatic conversion of carbon dioxide. Energies 10(4):473

    Article  Google Scholar 

  • Long NVD, Lee SH, Lee MY (2010) Design and optimization of a dividing wall column for debottlenecking of the acetic acid purification. Chem Eng Process. 49:825–835

    Article  CAS  Google Scholar 

  • Long NVD, Minh LQ, Ahmad F, Luis P, Lee MY (2016) Intensified distillation-based separation processes: recent developments and perspectives. Chem. Eng. Technol. 39:2183–2195

    Article  CAS  Google Scholar 

  • Long NVD, Minh LQ, Nhien LC, Lee MY (2015) A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column. Appl. Energy 159:28–38

    Article  CAS  Google Scholar 

  • Loy YY, Lee XL, Rangaiah GP (2015) Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: an economic comparison after heat integration and optimization. Sep Purif Technol. 149:413–427

    Article  CAS  Google Scholar 

  • Luis P, Amelio A, Vreysen S, Calabro V, Van der Bruggen B (2014) Simulation and environmental evaluation of process design: Distillation vs. hybrid distillation–pervaporation for methanol/tetrahydrofuran separation. Appl. Engergy 113:565–575

    Article  CAS  Google Scholar 

  • Lutze P (2014) Distillation in bioprocessing. In: Gorak A, Schoenmakers H (eds) Distillation: operation and applications, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Lutze P, Dada EA, Gani R, Woodley JM (2010) Heterogeneous catalytic distillation - a patent review. Recent Pat Chem Eng. 3:208–229

    Article  CAS  Google Scholar 

  • Lutze P, Gorak A (2013) Reactive and membrane-assisted distillation: Recent developments and perspective. Chem Eng Res Des. 91:1978–1997

    Article  CAS  Google Scholar 

  • Luyben WL (2005) Comparison of pressure-swing and extractive-distillation methods for methanol-recovery systems in the TAME reactive-distillation process. Ind Eng Chem Res. 44:5715–5725

    Article  CAS  Google Scholar 

  • Luyben WL (2008a) Design and control of a fully heat-integrated pressure swing azeotropic distillation system. Ind Eng Chem Res. 47:2681–2695

    Article  CAS  Google Scholar 

  • Luyben WL (2008b) Comparison of extractive distillation and pressure-swing distillation for acetone-methanol separation. Ind. Eng. Chem. Res. 47:2696––2707

    Article  CAS  Google Scholar 

  • Luyben WL (2008c) Control of the maximum-boiling acetone/chloroform azeotropic distillation system. Ind Eng Chem Res. 47:6140–6149

    Article  CAS  Google Scholar 

  • Luyben WL, Chien IL (2010) Design and control of distillation systems for separating azeotropes. Wiley-AIChE, Hoboken

    Book  Google Scholar 

  • Luyben WL, Yu C-C (2008) Reactive distillation design and control. Wiley-AIChE, Hoboken

    Book  Google Scholar 

  • Macedonio F, Drioli E (2017) Membrane engineering for green process engineering. Engineering 3:290–298

    Article  Google Scholar 

  • Mersmann A, Kind M, Stichlmair J (2011) Thermal separation technology – principles, methods, process design. Springer, Verlag Berlin, Heidelberg

    Book  Google Scholar 

  • Modla G, Lang P (2013) Heat pump systems with mechanical compression for batch distillation. Energy 62:403–417

    Article  CAS  Google Scholar 

  • Moritz P, Hasse H (1999) Fluid dynamics in reactive distillation packing Katapak®-S. Chem Eng Sci. 54:1367–1374

    Article  CAS  Google Scholar 

  • Moulijn JA, Kreutzer MT, Nijhuis TA, Kapteijn F (2011) Monolithic catalysts and reactors: high precision with low energy consumption. Adv Catal 54:249–327

    CAS  Google Scholar 

  • Moulijn JA, Stankiewicz A, Grievink J et al (2008) Process intensification and process systems engineering: a friendly symbiosis. Comput Chem Eng. 32:3–11

    Article  CAS  Google Scholar 

  • Nhien LC, Long NVD, Kim S et al (2016a) Design and optimization of intensified biorefinery process for furfural production through a systematic procedure. Biochem Eng J. 116:166–175

    Article  CAS  Google Scholar 

  • Nhien LC, Long NVD, Kim S et al (2016c) Design and assessment of hybrid purification processes through a systematic solvent screening for the production of levulinic acid from lignocellulosic biomass. Ind Eng Chem Res. 55:5180–5189

    Article  CAS  Google Scholar 

  • Nhien LC, Long NVD, Kim SY, Lee MY (2017a) Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass. Biotechnol Biofuels 10:81

    Article  Google Scholar 

  • Nhien LC, Long NVD, Lee MY (2016b) Design and optimization of the levulinic acid recovery process from lignocellulosic biomass. Chem Eng Res Des. 107:126–136

    Article  CAS  Google Scholar 

  • Nhien LC, Long NVD, Lee MY (2017b) Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass. Energ Convers Manage. 141:367–377

    Article  CAS  Google Scholar 

  • Niesbach A, Adams II TA, Lutze P (2013) Semicontinuous distillation of impurities for the production of butyl acrylate from bio-butanol and bioacrylic acid. Chem Eng Proc. 74:165–177

    Article  CAS  Google Scholar 

  • Nikolaides IP, Malone MF (1987) Approximate design of multiple-feed/side-stream distillation systems. Ind Eng Chem Res. 26:1839–1845

    Article  CAS  Google Scholar 

  • Papastathopoulou HS, Luyben WL (1991) Control of a binary sidestream distillation column. Ind Eng Chem Res. 30:713–721

    Article  Google Scholar 

  • Pyhälahti A, Klemola K (1998) Bench scale experiments with TAME for the comparison of two catalytic distillation packing arrangements. Acta Polytech Scand 257:101–111

    Google Scholar 

  • Ritter JA, Wu F, Ebner AD (2012) New approach for modeling hybrid pressure swing adsorption–distillation processes. Ind Eng Chem Res. 51(27):9343–9355

    Article  CAS  Google Scholar 

  • Rooks RE, Malone MF, Doherty MF (1996) A geometric design method for side-stream distillation columns. Ind Eng Chem Res. 35:3653–3664

    Article  CAS  Google Scholar 

  • Roth T, Kreis P, Górak A (2013) Process analysis and optimisation of hybrid processes for the dehydration of ethanol. Chem Eng Res Des. 91:1171–1185

    Article  CAS  Google Scholar 

  • Shizou M, Zheng SN, Ikuho Y (2000) Analysis of divided-wall column for extractive distillation. Kagaku Kogaku Ronbunshu 26:627–632

    Article  Google Scholar 

  • Sirkar KK, Fane AG, Wang R, Wickramasinghe SR (2015) Process intensification with selected membrane processes. Chem Eng Process. 87:16–25

    Article  CAS  Google Scholar 

  • Skiborowski M, Gorak A (2016) Hybrid separation processes. In: Lutze P, Gorak A (eds) Reactive and membrane-assisted separations. De Gruyter, Berlin

    Google Scholar 

  • Skiborowski M, Harwardt A, Marquardt W (2013) Conceptual design of distillation-based hybrid separation processes. Annu Rev Chem Biomol Eng. 4:45–68

    Article  CAS  Google Scholar 

  • Slade B, Stober B, Simpson D (2006) Dividing wall column revamp optimizes mixed xylenes production. IChemE Symp Ser. 152

    Google Scholar 

  • Smith, LA (1980) Catalyst system for separating isobutene from C streams. U.S. patent 4,215,011, 27 July

    Google Scholar 

  • Smith R (2005) Chemical process design and integration. Wiley, West Sussex, p 212–232

    Google Scholar 

  • Sowerby B, Crittenden BD (1988) An experiment comparison of type A molecular sieves for drying the ethanol–water azeotrope. Gas Sep Purif. 2:77–83

    Article  Google Scholar 

  • Stephan W, Noble RD, Koval CA (1995) Design methodology for a membrane/distillation column hybrid process. J Membr Sci. 99(3):259–272

    Article  CAS  Google Scholar 

  • Stichlmair JG, Fair JR (1998) Distillation - principles and practice. Wiley–VCH, New York

    Google Scholar 

  • Stringaro JP (1995) EP 631813

    Google Scholar 

  • Subawalla H, Fair JR (1999) Design guidelines for solid-catalyzed reactive distillation systems. Ind Eng Chem Res. 38:3696–3709

    Article  CAS  Google Scholar 

  • Sundmacher K, Hoffmann U (1993) Activity evaluation of a catalytic distillation packing for MTBE production. Chem Eng Technol. 16:279

    Article  CAS  Google Scholar 

  • Sundmacher K, Kienle A (2003) Reactive distillation—status and future directions. Wiley–VCH, New York

    Google Scholar 

  • Tijing LD, Woo YC, Choi JS, Lee SH, Kim SH, Shon HK (2015) Fouling and its control in membrane distillation - A review. J Membr Sci. 475:215–244

    Article  CAS  Google Scholar 

  • Treybal RE (1955) Mass-transfer operations. McGraw Hill, New York

    Google Scholar 

  • Van Hoof V, Van den Abeele L, Buekenhoudt A, Dotremont C, Leysen R (2004) Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Separation Purif Technol. 37:33–49

    Article  CAS  Google Scholar 

  • Venkatesan S (2013) Adsorption. In: Ramaswamy S, Huang HJ, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, West Sussex

    Google Scholar 

  • Vercher E, Orchilles AV, Miguel PJ et al (2006) Isobaric vapor-liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa. Fluid Phase Equilib. 250:131–137

    Article  CAS  Google Scholar 

  • Verhoef A, Degrève J, Huybrechs B et al (2008) Simulation of a hybrid pervaporation–distillation process. Com Chem Eng. 32:1135–1146

    Article  CAS  Google Scholar 

  • Verhoeve L, De Schepper H (1973) The vapor - liquid equilibria of the binary, ternary and quaternary systems formed by acetone, methanol, propan-2-ol and water. J Appl Chem Biotechnol. 23:607–619

    Article  Google Scholar 

  • Wachter JA, Ko TKT, Andres RP (1988) Minimum reflux behavior of complex distillation columns. AIChE J. 34:1164–1184

    Article  CAS  Google Scholar 

  • Wang SJ, Yu CC, Huang HP (2010) Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation. Com Chem Eng. 34:361–373

    Article  CAS  Google Scholar 

  • Wankat PC (2012) Separation process engineering. Includes mass transfer analysis, 3rd edn. Prentice-Hall, Upper Saddle River,

    Google Scholar 

  • Werth K, Lutze P, Kiss AA, Stankiewicz AI, Stefanidis GD, Górak A (2015) A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction. Chem Eng Process. 93:87–97

    Article  CAS  Google Scholar 

  • Widagdo S, Seider WD (1996) Azeotropic distillation. AIChE J. 42:96–130

    Article  CAS  Google Scholar 

  • Yu B, Wang Q, Xu C (2012) Design and control of distillation system for methylal/methanol separation. Part 2: pressure swing distillation with full heat integration. Ind Eng Chem Res. 51:1293–1310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moonyong Lee or Nguyen Van Duc Long .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, M., Long, N.V.D. (2017). Promising Retrofit Technologies for Nonconventional Distillation Sequence . In: Advances in Distillation Retrofit. Springer, Singapore. https://doi.org/10.1007/978-981-10-5901-8_5

Download citation

Publish with us

Policies and ethics