Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 220 Accesses

Abstract

In this chapter, we focus not on the charge-glass state itself but on the transforming process from charge glass into charge order, that is, electronic crystal growth. First, time dependence of resistivity during the process is measured. We found that obtained crystallization time can be well described by dome-like structure called Time-Temperature-Transformation (T-T-T) curve. It provides a strong evidence for the existence of two distinct processes in electronic crystal growth; nucleation and growth. Furthermore, NMR measurements, which serve as a probe of local charge density profile, give us the remarkable data that the intermediate states different from both initial charge-glass and final charge-ordered states are formed before the formation of true charge ordering near T g . It is reminiscent of two-step nucleation discussed intensively in classical colloidal system, indicating the universality of such novel nucleation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Palberg, J. Phys. Condens. Matter 11, R323 (1999)

    Article  ADS  Google Scholar 

  2. U. Gasser, J. Phys. Condens. Matter 21, 203101 (2009)

    Article  ADS  Google Scholar 

  3. U. Gasser, E.R. Weeks, A. Schofield, P.N. Pussey, D.A. Weitz, Science 292, 258 (2001)

    Article  ADS  Google Scholar 

  4. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  5. E. Dagotto, Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  6. K. Miyagawa, A. Kawamoto, K. Kanoda, Phys. Rev. B 62, R7679 (2000)

    Article  ADS  Google Scholar 

  7. K. Yamamoto, K. Yakushi, K. Miyagawa, K. Kanoda, A. Kawamoto, Phys. Rev. B 65, 85110 (2002)

    Article  ADS  Google Scholar 

  8. F. Nad, P. Monceau, H.M. Yamamoto, Phys. Rev. B 76, 205101 (2007)

    Article  ADS  Google Scholar 

  9. M. Watanabe, Y. Noda, Y. Nogami, H. Mori, Synth. Met. 135–136, 665 (2003)

    Article  Google Scholar 

  10. J.F. Löffler, J. Schroers, W.L. Johnson, Appl. Phys. Lett. 77, 681 (2000)

    Article  ADS  Google Scholar 

  11. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, 1996)

    Google Scholar 

  12. D. Turnbull, Contemp. Phys. 10, 473 (1969)

    Article  ADS  Google Scholar 

  13. D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)

    Article  ADS  Google Scholar 

  14. K.F. Kelton, Solid State Phys. 45, 75 (1991)

    Article  Google Scholar 

  15. D.R. Uhlmann (Plenum, New York, 1969)

    Google Scholar 

  16. H. Senapati, K.K. Kadiyala, C.A. Angell, J. Phys. Chem. 95, 7050 (1991)

    Article  Google Scholar 

  17. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Nat. Mater. 11, 279 (2012)

    Article  ADS  Google Scholar 

  18. R. Chiba, K. Hiraki, T. Takahashi, H.M. Yamamoto, T. Nakamura, Phys. Rev. Lett. 93, 19 (2004)

    Google Scholar 

  19. S. Iacopini, T. Palberg, H.J. Schöpe, J. Chem. Phys. 130 (2009)

    Google Scholar 

  20. J.R. Savage, A.D. Dinsmore, Phys. Rev. Lett. 102, 198302 (2009)

    Article  ADS  Google Scholar 

  21. E. Sanz, C. Valeriani, Nat. Mater. 14, 15 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuro Sato .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte. Ltd.

About this chapter

Cite this chapter

Sato, T. (2017). Electronic Crystal Growth. In: Transport and NMR Studies of Charge Glass in Organic Conductors with Quasi-triangular Lattices . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5879-0_4

Download citation

Publish with us

Policies and ethics