Bioprospecting Biodiversity to Generate Bioresources



Bioprospecting is the process of searching for species of plants and animals (biodiversity) which can serve as sources of medicinal compounds and other commercially important compounds (bioresources) [1]. Bioprospecting can be considered as a way to fund the conservation and preservation of biodiversity, especially in developing countries. However, bioprospecting takes up a very meagre amount of time, effort and funding from the pharmaceutical companies [2]. This is because the probability of any synthetic or natural chemical having any potential biological activity is very low. Considering that a group of compounds can have similar activity against a wide range of diseases and that chemical synthesis of compounds is much cheaper, pharmaceutical companies are not inclined to devote much of their budget to bioprospecting [3]. Also, the process of screening extracts for drug activity has a very low success rate [3]. For example, in one case, only 1% of 18,000 extracts screened showed positive anti-cancer activity. Despite these drawbacks, it has been suggested that, with progress in science, bioprospecting can be made more cost-effective in the future [4]. Organisms of all types, like bacteria [5], fungi [6], plants [7], invertebrates [8, 9, 10] and even vertebrates [11] have been used in bioprospecting. Systems biology and taxonomy play important roles in establishing bioprospecting strategies. With the increase in antibiotic resistance, bioprospecting to discover novel natural compounds and extracts is gathering importance in the field of drug discovery.


Bioprospecting Absorption, Distribution, Metabolism, Excretion And Toxicity (ADMET) ADMET Studies ADMET Properties Drosophila Tracheal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Cordell GA (2000) Biodiversity and drug discovery—a symbiotic relationship. Phytochemistry 55(6):463–480CrossRefPubMedGoogle Scholar
  3. 3.
    Firn RD (2003) Bioprospecting—why is it so unrewarding? Biodivers Conserv 12:207–216CrossRefGoogle Scholar
  4. 4.
    Rausser GC, Small AA (2000) Valuing research leads: bioprospecting and the conservation of genetic resources. J Polit Economy 108(1):173–206CrossRefGoogle Scholar
  5. 5.
    Indraningrat AA, Smidt H, Sipkema D (2016) Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar Drugs 14(5):87CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Carvalho CR, Wedge DE, Cantrell CL, Silva-Hughes AF, Pan Z, Moraes RM, Madoxx VL, Rosa LH (2016) Molecular phylogeny, diversity and bioprospecting of endophytic fungi associated with wild ethnomedicinal North American Plant Echinacea purpurea (Asteraceae). Chem Biodivers 13(7):918Google Scholar
  7. 7.
    Ooi DJ, Chan KW, Sarega N, Alitheen NB, Ithnin H, Ismail M (2016) Bioprospecting the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as a potential antioxidant therapeutic agent. Molecules 21(6):E682CrossRefPubMedGoogle Scholar
  8. 8.
    Leal MC, Puga J, Serôdio J, Gomes NC, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting? PLoS ONE 7(1):e30580CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rocha J, Peixe L, Gomes NC, Calado R (2011) Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar Drugs 9(10):1860–1886CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nielsen V, Hurtado P, Janzen DH, Tamayo G, Sittenfeld A (2004) Arthropod collection for biodiversity prospection in the Guanacaste Conservation Area, Costa Rica. Rev Biol Trop. 52(1):119–132CrossRefPubMedGoogle Scholar
  11. 11.
    Bishop BM, Juba ML, Devine MC, Barksdale SM, Rodriguez CA, Chung MC, Russo PS, Vliet KA, Schnur JM, van Hoek ML (2015) Bioprospecting the American alligator (Alligator mississippiensis) host defense peptidome. PLoS ONE 10(2):e0117394CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lyngwi NA, Nongkhlaw M, Kalita D, Joshi SR (2016) Bioprospecting of plant growth promoting bacilli and related genera prevalent in soils of pristine sacred groves: biochemical and molecular approach. PLoS ONE 11(4):e0152951CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    De Santi C, Altermark B, de Pascale D, Willassen NP (2016) Bioprospecting around Arctic islands: marine bacteria as rich source of biocatalysts. J Basic Microbiol 56(3):238–253CrossRefPubMedGoogle Scholar
  14. 14.
    Maciel E, Leal MC, Lillebø AI, Domingues P, Domingues MR, Calado R (2016) Bioprospecting of marine macrophytes using MS-based lipidomics as a new approach. Mar Drugs 14(3):E49CrossRefPubMedGoogle Scholar
  15. 15.
    Ahbirami R, Zuharah WF, Yahaya ZS, Dieng H, Thiagaletchumi M, Fadzly N, Ahmad AH, Abu Bakar S (2014) Oviposition deterring and oviciding potentials of Ipomoea cairica L. leaf extract against dengue vectors. Trop Biomed 31(3):456–465PubMedGoogle Scholar
  16. 16.
    Das R, Mitra S, Mukherjee K, Paul P, Singh UP, Banerjee ER (2015) Anti-oxidant and anti-inflammatory activities of different varieties of Piper leaf extracts (Piper betle L.). J Nutr Food Sci 5(5):415Google Scholar
  17. 17.
    Das R, Mitra S, Mukherjee K, Singh UP, Banerjee ER (2015) Anti-oxiflammatory profile of date extracts (Phoenix sylvestris). Biomed Res Ther 2(6):297–317CrossRefGoogle Scholar
  18. 18.
    Savoia D, Avanzini C, Allice T, Callone E, Guella G, Dini F (2004) Antimicrobial activity of Euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus. Antimicrob Agent Chemother 48(10):3828–3833CrossRefGoogle Scholar
  19. 19.
    Sarumathi G, Arumugam M, Kumaresan S, Balasubramanian T (2012) Studies on bioprospecting potential of a gastropod mollusc Cantharus tranquebaricus (Gmelin, 1791). Asian Pac J Trop Biomed 2(10):759–764CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Leal MC, Madeira C, Brandão CA, Puga J, Calado R (2012) Bioprospecting of marine invertebrates for new natural products—a chemical and zoogeographical perspective. Molecules 17(8):9842–9854CrossRefPubMedGoogle Scholar
  21. 21.
    Faisal MN, Hoffmann J, El-Kholy S, Kallsen K, Wagner C, Bruchhaus I, Fink C, Roeder T (2014) Transcriptional regionalization of the fruit fly’s airway epithelium. PLoS ONE 9(7):e102534CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA (2003) Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19:623–647CrossRefPubMedGoogle Scholar
  23. 23.
    Wagner C, Isermann K, Fehrenbach H, Roeder T (2008) Molecular architecture of the fruit fly’s airway epithelial immune system. BMC Genom 9:446CrossRefGoogle Scholar
  24. 24.
    Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15(4):410–416CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Holgate ST (2007) The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol 28(6):248–251CrossRefPubMedGoogle Scholar
  26. 26.
    Pantano C, Ather JL, Alcorn JF, Poynter ME, Brown AL, Guala AS, Beuschel SL, Allen GB, Whittaker LA, Bevelander M, Irvin CG, Janssen-Heininger YM (2008) Nuclear factor-κB activation in airway epithelium induces inflammation and hyper-responsiveness. Am J Respir Crit Care Med 177(9):959–969CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743CrossRefPubMedGoogle Scholar
  28. 28.
    Roeder T, Isermann K, Kabesch M (2009) Drosophila in asthma research. Am J Respir Crit Care Med 179(11):979–983CrossRefPubMedGoogle Scholar
  29. 29.
    Vercelli D (2008) Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 8(3):169–182CrossRefPubMedGoogle Scholar
  30. 30.
    Vercelli D (2008) Advances in asthma and allergy genetics in 2007 (Review). J Allergy Clin Immunol 122(2):267–271CrossRefPubMedGoogle Scholar
  31. 31.
    Wagner C, Isermann K, Roeder T (2009) Infection induces a survival program and local remodeling in the airway epithelium of the fly. FASEB J 23(7):2045–2054CrossRefPubMedGoogle Scholar
  32. 32.
    Arbouzova NI, Zeidler MP (2006) JAK/STAT signaling in Drosophila: insights into conserved regulatory and cellular functions. Development 133(14):2605–2616CrossRefPubMedGoogle Scholar
  33. 33.
    Shuai K, Liu B (2003) Regulation of JAK-STAT signaling in the immune system. Nat Rev Immunol 3(11):900–911CrossRefPubMedGoogle Scholar
  34. 34.
    Issa NT, Kruger J, Wathieu H, Raja R, Byers SW, Dakshanamurthy S (2016) DrugGenEx-Net: a novel computational platform for systems pharmacology and gene expression-based drug repurposing. BMC Bioinform 17(1):202CrossRefGoogle Scholar
  35. 35.
    Li AP (2001) Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 6(7):357–366CrossRefPubMedGoogle Scholar
  36. 36.
    Barar FSK (1985) Essentials of pharmacotherapeutics, 3rd edn. S. Chand Publishing (Print)Google Scholar
  37. 37.
    Rutter N (1987) Drug absorption through the skin: a mixed blessing. Arch Dis Child 62:220–221CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Davis AM, Riley RJ (2004) Predictive ADMET studies, the challenges and the opportunities. Curr Opin Chem Biol 8(4):378–386CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations