Advertisement

Pluronic Nanotechnology for Overcoming Drug Resistance

  • Pallabita Chowdhury
  • Prashanth K.B. Nagesh
  • Santosh Kumar
  • Meena Jaggi
  • Subhash C. Chauhan
  • Murali M. YallapuEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Chemotherapy is one of the most conventionally used therapeutic interventions for treating various diseases. Chances of acquiring multidrug resistance in response to chemotherapeutic agents are exceedingly common among patients. Drug resistance arises mainly due to overexpression of efflux transporters such as P-glycoprotein and multidrug resistance-associated protein of the ATP-binding cassette superfamily of proteins, which significantly limits intracellular drug accumulation and drug activity. Although many approaches exist to overcome drug resistance, their uses are significantly limited in clinical practice. In this chapter, we demonstrate the superior functions of Pluronic-based technologies to overcome drug resistance. The present chapter highlights various aspects of Pluronic polymers, Pluronic conjugates, Pluronic nanotechnology, as well as their therapeutic implications for effective treatment strategies. We include the role of Pluronic polymers as a pharmaceutic excipient and drug delivery vehicle in this review. In addition, we highlight examples of Pluronic nanosystems that are currently in preclinical development, clinical trials, and clinically translatable formulations. Furthermore, a number of innovative Pluronic nano-designs of advanced therapeutics for future medicinal applications are presented. Collectively, the use of Pluronic-based nanoformulations discussed in this chapter suggests sensitization and prevention of drug resistance. Such an approach not only minimizes the dose required for treatment, but also minimizes the number of treatment cycles, which is useful in a clinical scenario.

Keywords

Pluronics Nanoparticles Nanotechnology Drug resistance 

References

  1. 1.
    Jacoby GA (2009) History of drug-resistant microbes. In: Antimicrobial drug resistance. Springer, Berlin, pp 3–7Google Scholar
  2. 2.
    Prevention CfDCa (2011) Antimicrobial resistance: no action today, no cure tomorrowGoogle Scholar
  3. 3.
    Alakhova DY, Kabanov AV (2014) Pluronics and MDR reversal: an update. Mol Pharm 11(8):2566–2578CrossRefGoogle Scholar
  4. 4.
    Persidis A (1999) Cancer multidrug resistance. Nat Biotechnol 17(1):94–95CrossRefGoogle Scholar
  5. 5.
    Sakurai Y, Hatakeyama H, Akita H, Harashima H (2014) Improvement of doxorubicin efficacy using liposomal anti-polo-like kinase 1 siRNA in human renal cell carcinomas. Mol Pharm 11(8):2713–2719CrossRefGoogle Scholar
  6. 6.
    Singh S, Narang AS, Mahato RI (2011) Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res 28(12):2996–3015CrossRefGoogle Scholar
  7. 7.
    Babu A, Wang Q, Muralidharan R, Shanker M, Munshi A, Ramesh R (2014) Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/Plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells. Mol Pharm 11(8):2720–2733CrossRefGoogle Scholar
  8. 8.
    Fonseca SB, Pereira MP, Mourtada R, Gronda M, Horton KL, Hurren R, Minden MD, Schimmer AD, Kelley SO (2011) Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem Biol 18(4):445–453CrossRefGoogle Scholar
  9. 9.
    Dumortier G, Grossiord JL, Agnely F, Chaumeil JC (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23(12):2709–2728CrossRefGoogle Scholar
  10. 10.
    Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV (2001) Mechanism of pluronic effect on P-glycoprotein efflux system in blood–brain barrier: contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther 299(2):483–493Google Scholar
  11. 11.
    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 54(5):759–779CrossRefGoogle Scholar
  12. 12.
    Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106CrossRefGoogle Scholar
  13. 13.
    Schmolka IR (1977) A review of block polymer surfactants. J Am Oil Chem Soc 54(3):110–116CrossRefGoogle Scholar
  14. 14.
    Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20(7):305–311CrossRefGoogle Scholar
  15. 15.
    Batrakova EV, Li S, Alakhov VY, Miller DW, Kabanov AV (2003) Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J Pharmacol Exp Ther 304(2):845–854CrossRefGoogle Scholar
  16. 16.
    Kabanov AV, Nazarova IR, Astafieva IV, Batrakova EV, Alakhov VY, Yaroslavov AA, Kabanov VA (1995) Micelle formation and solubilization of fluorescent probes in poly (oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 28(7):2303–2314CrossRefGoogle Scholar
  17. 17.
    Alakhov V, Lemieux P, Klinski E, Kabanov A, Pietrzynski G (2001) Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin Biol Ther 1(4):583–602CrossRefGoogle Scholar
  18. 18.
    Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A (1999) Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 16(9):1373–1379CrossRefGoogle Scholar
  19. 19.
    Nagarajan R (1999) Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic®(PEO–PPO–PEO) block copolymers. Colloids Surf B 16(1):55–72CrossRefGoogle Scholar
  20. 20.
    Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, Sun H, Huang L (2010) The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomed Nanotechnol Biol Med 6(1):170–178CrossRefGoogle Scholar
  21. 21.
    Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18(10):412–420CrossRefGoogle Scholar
  22. 22.
    Tang X, Liang Y, Feng X, Zhang R, Jin X, Sun L (2015) Co-delivery of docetaxel and Poloxamer 235 by PLGA–TPGS nanoparticles for breast cancer treatment. Mater Sci Eng C 49:348–355CrossRefGoogle Scholar
  23. 23.
    Venne A, Li S, Mandeville R, Kabanov A, Alakhov V (1996) Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Can Res 56(16):3626–3629Google Scholar
  24. 24.
    Miller DW, Batrakova EV, Kabanov AV (1999) Inhibition of multidrug resistance-associated protein (MRP) functional activity with pluronic block copolymers. Pharm Res 16(3):396–401CrossRefGoogle Scholar
  25. 25.
    Yamagata T, Kusuhara H, Morishita M, Takayama K, Benameur H, Sugiyama Y (2007) Effect of excipients on breast cancer resistance protein substrate uptake activity. J Control Release 124(1):1–5CrossRefGoogle Scholar
  26. 26.
    van Veen HW, Margolles A, Putman M, Sakamoto K, Konings WN (1999) Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance. In: Lactic acid bacteria: genetics, metabolism and applications. Springer, Berlin, pp 347–352Google Scholar
  27. 27.
    Altan N, Chen Y, Schindler M, Simon SM (1998) Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med 187(10):1583–1598CrossRefGoogle Scholar
  28. 28.
    Breuninger LM, Paul S, Gaughan K, Miki T, Chan A, Aaronson SA, Kruh GD (1995) Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Can Res 55(22):5342–5347Google Scholar
  29. 29.
    Nooter K, Stoter G (1996) Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract 192(7):768–780CrossRefGoogle Scholar
  30. 30.
    Clary I, Doherty G, Moran E, Clynes M (1997) The multidrug-resistant human lung tumour cell line, DLKP-A10, expresses novel drug accumulation and sequestration systems. Biochem Pharmacol 53(10):1493–1502CrossRefGoogle Scholar
  31. 31.
    Shapiro AB, Fox K, Lee P, Yang YD, Ling V (1998) Functional intracellular P-glycoprotein. Int J Cancer 76(6):857–864CrossRefGoogle Scholar
  32. 32.
    Benderra Z, Morjani H, Trussardi A, Manfait M (1998) Role of the vacuolar H+-ATPase in daunorubicin distribution in etoposide-resistant MCF7 cells overexpressing the multidrug-resistance associated protein. Int J Oncol 12(3):711–716Google Scholar
  33. 33.
    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2):189–212CrossRefGoogle Scholar
  34. 34.
    Van Zutphen H, Merola A, Brierley G, Cornwell DG (1972) The interaction of nonionic detergents with lipid bilayer membranes. Arch Biochem Biophys 152(2):755–766CrossRefGoogle Scholar
  35. 35.
    Atkinson TP, Smith T, Hunter R (1988) Histamine release from human basophils by synthetic block co-polymers composed of polyoxyethylene and polyoxypropylene and synergy with immunologic and non-immunologic stimuli. J Immunol 141(4):1307–1310Google Scholar
  36. 36.
    Atkinson TP, Smith TF, Hunter RL (1988) In vitro release of histamine from murine mast cells by block co-polymers composed of polyoxyethylene and polyoxypropylene. J Immunol 141(4):1302–1306Google Scholar
  37. 37.
    Brierley G, Jurkowitz M, Merola A, Scott K (1972) Ion transport by heart mitochondria: XXV. Activation of energy-linked K+ uptake by non-ionic detergents. Arch Biochem Biophys 152(2):744–754CrossRefGoogle Scholar
  38. 38.
    Brustovetskiĭ N, Dedukhova V, Egorova M, Mokhova E, Skulachev V (1991) Uncoupling of oxidative phosphorylation by fatty acids and detergents suppressed by ATP/ADP antiporter inhibitors. Biokhimiia (Moscow, Russia) 56(6):1042–1048Google Scholar
  39. 39.
    Kirillova G, Mokhova E, Dedukhova V, Tarakanova A, Ivanova V, Efremova N, Topchieva I (1993) The influence of pluronics and their conjugates with proteins on the rate of oxygen consumption by liver mitochondria and thymus lymphocytes. Biotechnol Appl Biochem 18(3):329–339Google Scholar
  40. 40.
    Su F, Hu X, Jia W, Gong C, Song E, Hamar P (2003) Glutathion S Transferase π indicates chemotherapy resistance in breast cancer. J Surg Res 113(1):102–108CrossRefGoogle Scholar
  41. 41.
    Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, Nicholls D, Alakhov VY, Kabanov AV (2010) Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release 142(1):89–100CrossRefGoogle Scholar
  42. 42.
    Minko T, Batrakova EV, Li S, Li Y, Pakunlu RI, Alakhov VY, Kabanov AV (2005) Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release 105(3):269–278CrossRefGoogle Scholar
  43. 43.
    Kabanov AV, Chekhonin V, Alakhov VY, Batrakova E, Lebedev A, Melik-Nubarov N, Arzhakov S, Levashov A, Morozov G, Severin E (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles: micelles as microcontainers for drug targeting. FEBS Lett 258(2):343–345CrossRefGoogle Scholar
  44. 44.
    Gao Z-G, Fain HD, Rapoport N (2005) Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 102(1):203–222CrossRefGoogle Scholar
  45. 45.
    Yang T-F, Chen C-N, Chen M-C, Lai C-H, Liang H-F, Sung H-W (2007) Shell-crosslinked Pluronic L121 micelles as a drug delivery vehicle. Biomaterials 28(4):725–734CrossRefGoogle Scholar
  46. 46.
    Tian J-L, Zhao Y-Z, Jin Z, Lu C-T, Tang Q-Q, Xiang Q, Sun C-Z, Zhang L, Xu Y-Y, Gao H-S (2010) Synthesis and characterization of Poloxamer 188-grafted heparin copolymer. Drug Dev Ind Pharm 36(7):832–838CrossRefGoogle Scholar
  47. 47.
    Song H, He R, Wang K, Ruan J, Bao C, Li N, Ji J, Cui D (2010) Anti-HIF-1α antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials 31(8):2302–2312CrossRefGoogle Scholar
  48. 48.
    Li L, Tan YB (2008) Preparation and properties of mixed micelles made of Pluronic polymer and PEG-PE. J Colloid Interface Sci 317(1):326–331CrossRefGoogle Scholar
  49. 49.
    Hassanzadeh S, Feng Z, Pettersson T, Hakkarainen M (2015) A proof-of-concept for folate-conjugated and quercetin-anchored pluronic mixed micelles as molecularly modulated polymeric carriers for doxorubicin. Polymer 74:193–204CrossRefGoogle Scholar
  50. 50.
    Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116(2):150–158CrossRefGoogle Scholar
  51. 51.
    Gustafson DL, Merz AL, Long ME (2005) Pharmacokinetics of combined doxorubicin and paclitaxel in mice. Cancer Lett 220(2):161–169CrossRefGoogle Scholar
  52. 52.
    Chen Y, Zhang W, Huang Y, Gao F, Sha X, Fang X (2015) Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int J Pharm 488(1):44–58CrossRefGoogle Scholar
  53. 53.
    Hellmich W, Regtmeier J, Duong TT, Ros R, Anselmetti D, Ros A (2005) Poly (oxyethylene) based surface coatings for poly (dimethylsiloxane) microchannels. Langmuir 21(16):7551–7557CrossRefGoogle Scholar
  54. 54.
    Liu X, Wu D, Turgman-Cohen S, Genzer J, Theyson TW, Rojas OJ (2010) Adsorption of a nonionic symmetric triblock copolymer on surfaces with different hydrophobicity. Langmuir 26(12):9565–9574CrossRefGoogle Scholar
  55. 55.
    Muszanska AK, Busscher HJ, Herrmann A, van der Mei HC, Norde W (2011) Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials 32(26):6333–6341CrossRefGoogle Scholar
  56. 56.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20CrossRefGoogle Scholar
  57. 57.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefGoogle Scholar
  58. 58.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRefGoogle Scholar
  59. 59.
    Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV (1996) Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem 7(2):209–216CrossRefGoogle Scholar
  60. 60.
    Kabanov AV, Vinogradov SV, Suzdaltseva YG, Alakhov VY (1995) Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug Chem 6(6):639–643CrossRefGoogle Scholar
  61. 61.
    Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20 (5)Google Scholar
  62. 62.
    Trentin D, Hubbell J, Hall H (2005) Non-viral gene delivery for local and controlled DNA release. J Control Release 102(1):263–275CrossRefGoogle Scholar
  63. 63.
    Bu H-Z, Gukasyan HJ, Goulet L, Lou X-J, Xiang C, Koudriakova T (2007) Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 8(2):91–107CrossRefGoogle Scholar
  64. 64.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347CrossRefGoogle Scholar
  65. 65.
    Kim D-H, Martin DC (2006) Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27(15):3031–3037CrossRefGoogle Scholar
  66. 66.
    Riley T, Stolnik S, Heald C, Xiong C, Garnett M, Illum L, Davis S, Purkiss S, Barlow R, Gellert P (2001) Physicochemical evaluation of nanoparticles assembled from poly (lactic acid)-poly (ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir 17(11):3168–3174CrossRefGoogle Scholar
  67. 67.
    Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496CrossRefGoogle Scholar
  68. 68.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1):1–20CrossRefGoogle Scholar
  69. 69.
    Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876CrossRefGoogle Scholar
  70. 70.
    Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, Langer R, Farokhzad OC (2009) PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634CrossRefGoogle Scholar
  71. 71.
    Pitt CG, Marks T, Schindler A (1980) Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. Academic Press, New YorkGoogle Scholar
  72. 72.
    Pitt CG, Gratzl MM, Jeffcoat AR, Zweidinger R, Schindler A (1979) Sustained drug delivery systems II: factors affecting release rates from poly (ε-caprolactone) and related biodegradable polyesters. J Pharm Sci 68(12):1534–1538CrossRefGoogle Scholar
  73. 73.
    Jackanicz TM, Nash HA, Wise DL, Gregory JB (1973) Polylactic acid as a biodegradable carrier for contraceptive steroids. Contraception 8(3):227–234CrossRefGoogle Scholar
  74. 74.
    Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, Chen H, Sun H, Tian Y, Liu K (2009) A novel docetaxel-loaded poly (ε-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett 4(12):1530–1539CrossRefGoogle Scholar
  75. 75.
    Shen J, Yin Q, Chen L, Zhang Z, Li Y (2012) Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33(33):8613–8624CrossRefGoogle Scholar
  76. 76.
    Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mulé J, Baker JR Jr (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316CrossRefGoogle Scholar
  77. 77.
    Ihre HR, Padilla De Jesús OL, Szoka FC, Fréchet JM (2002) Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 13(3):443–452CrossRefGoogle Scholar
  78. 78.
    Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate–PEG–PAMAM Dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252CrossRefGoogle Scholar
  79. 79.
    Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324CrossRefGoogle Scholar
  80. 80.
    Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, Xu T (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 42(7):1032–1038CrossRefGoogle Scholar
  81. 81.
    Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17(6):585–594CrossRefGoogle Scholar
  82. 82.
    Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368CrossRefGoogle Scholar
  83. 83.
    Rojo J, Delgado R (2004) Glycodendritic structures: promising new antiviral drugs. J Antimicrob Chemother 54(3):579–581CrossRefGoogle Scholar
  84. 84.
    Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43CrossRefGoogle Scholar
  85. 85.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129CrossRefGoogle Scholar
  86. 86.
    Nguyen T, Nguyen C, Nguyend T, Trana N (2017) Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Mater Sci Eng C. 70(2):992–999Google Scholar
  87. 87.
    Gu Z, Wang M, Fang Q, Zheng H, Wu F, Lin D, Xu Y, Jin Y (2015) Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery. Drug Dev Ind Pharm 41(5):812–818CrossRefGoogle Scholar
  88. 88.
    Gu ZJ, Wang M, Fang QY, Wang CR, Zheng HY (2014) Inhibition of MCF-7/ADR cells by DOX-loaded pluronic-attached PAMAM dendrimer conjugate. Yao xue xue bao = Acta Pharm Sin 49(8):1188–1193Google Scholar
  89. 89.
    Wang M, Han M, Li Y, Jin Y, Gao JQ (2016) Chemosensitization of doxorubicin in multidrug‐resistant cells by unimolecular micelles via increased cellular accumulation and apoptosis. J Pharm PharmacolGoogle Scholar
  90. 90.
    Ebrahim S, Peyman GA, Lee PJ (2005) Applications of liposomes in ophthalmology. Surv Ophthalmol 50(2):167–182CrossRefGoogle Scholar
  91. 91.
    Cholkar K, Patel A, Vadlapudi AD, Mitra AK (2012) Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2(2):82CrossRefGoogle Scholar
  92. 92.
    Zhang X, Guo S, Fan R, Yu M, Li F, Zhu C, Gan Y (2012) Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 33(29):7103–7114CrossRefGoogle Scholar
  93. 93.
    Song CK, Balakrishnan P, Shim C-K, Chung S-J, Kim D-D (2011) Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells. J Microencapsul 28(6):575–581CrossRefGoogle Scholar
  94. 94.
    Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73(2):137–172CrossRefGoogle Scholar
  95. 95.
    Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16(2):295–309CrossRefGoogle Scholar
  96. 96.
    Jones M-C, Leroux J-C (1999) Polymeric micelles–a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111CrossRefGoogle Scholar
  97. 97.
    Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X (2013) Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomed 8:73Google Scholar
  98. 98.
    Chen Y, Sha X, Zhang W, Zhong W, Fan Z, Ren Q, Chen L, Fang X (2013) Pluronic mixed micelles overcoming methotrexate multidrug resistance: in vitro and in vivo evaluation. Int J Nanomed 8:1463Google Scholar
  99. 99.
    Wang Y, Yu L, Han L, Sha X, Fang X (2007) Difunctional Pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337(1):63–73CrossRefGoogle Scholar
  100. 100.
    Zhang X, Li F, Guo S, Chen X, Wang X, Li J, Gan Y (2014) Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials 35(11):3650–3665CrossRefGoogle Scholar
  101. 101.
    Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV (2005) Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 107(1):143–157CrossRefGoogle Scholar
  102. 102.
    Lin‐Gibson S, Bencherif S, Antonucci JM, Jones RL, Horkay F (2005) Synthesis and characterization of poly (ethylene glycol) dimethacrylate hydrogels. In: Macromolecular symposia, vol 1. Wiley Online Library, Hoboken, pp 243–254Google Scholar
  103. 103.
    Vinogradov SV, Kohli E, Zeman AD (2006) Comparison of nanogel drug carriers and their formulations with nucleoside 5′-triphosphates. Pharm Res 23(5):920–930CrossRefGoogle Scholar
  104. 104.
    Bontha S, Kabanov AV, Bronich TK (2006) Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Control Release 114(2):163–174CrossRefGoogle Scholar
  105. 105.
    Bronich TK, Keifer PA, Shlyakhtenko LS, Kabanov AV (2005) Polymer micelle with cross-linked ionic core. J Am Chem Soc 127(23):8236–8237CrossRefGoogle Scholar
  106. 106.
    Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2):165–196CrossRefGoogle Scholar
  107. 107.
    Kaur IP, Rana C, Singh H (2008) Development of effective ocular preparations of antifungal agents. J Ocul Pharmacol Ther 24(5):481–494CrossRefGoogle Scholar
  108. 108.
    Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, Erhan SZ, Wu XY (2006) A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23(7):1574–1585CrossRefGoogle Scholar
  109. 109.
    Sacchetti F, Marraccini C, D’Arca D, Pelà M, Pinetti D, Maretti E, Hanuskova M, Iannuccelli V, Costi MP, Leo E (2015) Enhanced anti-hyperproliferative activity of human thymidylate synthase inhibitor peptide by solid lipid nanoparticle delivery. Colloids Surf B 136:346–354CrossRefGoogle Scholar
  110. 110.
    Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906CrossRefGoogle Scholar
  111. 111.
    Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60CrossRefGoogle Scholar
  112. 112.
    Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32CrossRefGoogle Scholar
  113. 113.
    McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3(2):169Google Scholar
  114. 114.
    Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496CrossRefGoogle Scholar
  115. 115.
    Cheng J, Wang J, Chen B, Xia G, Cai X, Liu R, Ren Y, Bao W, Wang X (2011) A promising strategy for overcoming MDR in tumor by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin. Int J Nanomed 6:2123–2131CrossRefGoogle Scholar
  116. 116.
    Das RK, Kasoju N, Bora U (2010) Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol Biol Med 6(1):153–160CrossRefGoogle Scholar
  117. 117.
    Shenoy DB, Amiji MM (2005) Poly (ethylene oxide)-modified poly (ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293(1):261–270CrossRefGoogle Scholar
  118. 118.
    Shenoy D, Little S, Langer R, Amiji M (2005) Poly (ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2(5):357–366CrossRefGoogle Scholar
  119. 119.
    Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32(7):1890–1905CrossRefGoogle Scholar
  120. 120.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29(29):4012–4021CrossRefGoogle Scholar
  121. 121.
    Mahmood I, Guo C, Xia H, Ma J, Jiang Y, Liu H (2008) Lipase immobilization on oleic acid—Pluronic (L-64) block copolymer coated magnetic nanoparticles, for hydrolysis at the oil/water interface. Ind Eng Chem Res 47(17):6379–6385CrossRefGoogle Scholar
  122. 122.
    Paavola A, Kilpeläinen I, Yliruusi J, Rosenberg P (2000) Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int J Pharm 199(1):85–93CrossRefGoogle Scholar
  123. 123.
    Pan W, Yang Z (2011) Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomed 6:151–166Google Scholar
  124. 124.
    Tagami T, Kubota M, Ozeki T (2015) Effective remote loading of doxorubicin into DPPC/poloxamer 188 hybrid liposome to retain thermosensitive property and the assessment of carrier‐based acute cytotoxicity for pulmonary administration. J Pharm SciGoogle Scholar
  125. 125.
    Im Lee J, Yoo HS (2008) Pluronic decorated-nanogels with temperature-responsive volume transitions, cytotoxicities, and transfection efficiencies. Eur J Pharm Biopharm 70(2):506–513CrossRefGoogle Scholar
  126. 126.
    Choi JH, Jang JY, Joung YK, Kwon MH, Park KD (2010) Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. J Control Release 147(3):420–427CrossRefGoogle Scholar
  127. 127.
    Lee J-H, Lee H, Joung YK, Jung KH, Choi J-H, Lee D-H, Park KD, Hong S-S (2011) The use of low molecular weight heparin–pluronic nanogels to impede liver fibrosis by inhibition the TGF-β/Smad signaling pathway. Biomaterials 32(5):1438–1445CrossRefGoogle Scholar
  128. 128.
    Bae KH, Choi SH, Park SY, Lee Y, Park TG (2006) Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir 22(14):6380–6384CrossRefGoogle Scholar
  129. 129.
    Kamalasanan K, Deepa M, Sharma CP (2014) Supramolecular curcumin–barium prodrugs for formulating with ceramic particles. Colloids Surf B 122:301–308CrossRefGoogle Scholar
  130. 130.
    Jaiswal M, Kumar M, Pathak K (2015) Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf B 130:23–30CrossRefGoogle Scholar
  131. 131.
    Zhang B, Zhang Y, Liao Z, Jiang T, Zhao J, Tuo Y, She X, Shen S, Chen J, Zhang Q (2015) UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials 36:98–109CrossRefGoogle Scholar
  132. 132.
    Ong BY, Ranganath SH, Lee LY, Lu F, Lee H-S, Sahinidis NV, Wang C-H (2009) Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme. Biomaterials 30(18):3189–3196CrossRefGoogle Scholar
  133. 133.
    Gao Y, Chen L, Zhang Z, Chen Y, Li Y (2011) Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials 32(6):1738–1747CrossRefGoogle Scholar
  134. 134.
    Raveendran R, Bhuvaneshwar G, Sharma CP (2013) In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J Biomater Appl 27(7):811–827CrossRefGoogle Scholar
  135. 135.
    Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D (2015) Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 48:147–160CrossRefGoogle Scholar
  136. 136.
    Batrakova EV, Li S, Brynskikh AM, Sharma AK, Li Y, Boska M, Gong N, Mosley RL, Alakhov VY, Gendelman HE (2010) Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release 143(3):290–301CrossRefGoogle Scholar
  137. 137.
    Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomed Nanotechnol Biol Med 11(4):947–958CrossRefGoogle Scholar
  138. 138.
    Butt AM, Amin MCIM, Katas H (2015) synergistic effect of ph-responsive folate-functionalized poloxamer 407-TPgs-mixed micelles on targeted delivery of anticancer drugs. Int J Nanomed 10:1321Google Scholar
  139. 139.
    Nguyen DH, Lee JS, Bae JW, Choi JH, Lee Y, Son JY, Park KD (2015) Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. Int J Pharm 495(1):329–335CrossRefGoogle Scholar
  140. 140.
    Russell A, Hammond S, Morgan J (1986) Bacterial resistance to antiseptics and disinfectants. J Hosp Infect 7(3):213–225CrossRefGoogle Scholar
  141. 141.
    Jagannath C, Emanuele MR, Hunter RL (2000) Activity of poloxamer CRL-1072 against drug-sensitive and resistant strains of Mycobacterium tuberculosis in macrophages and in mice. Int J Antimicrob Agents 15(1):55–63CrossRefGoogle Scholar
  142. 142.
    Lee SH, Lee JE, Baek WY, Lim JO (2004) Regional delivery of vancomycin using pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo. J Control Release 96(1):1–7CrossRefGoogle Scholar
  143. 143.
    Tsai T, Yang Y-T, Wang T-H, Chien H-F, Chen C-T (2009) Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Lasers Surg Med 41(4):316CrossRefGoogle Scholar
  144. 144.
    WHO (2012) WHO HIV drug resistance report 2012. World Health Organization, GenevaGoogle Scholar
  145. 145.
    Spitzenberger TJ, Heilman D, Diekmann C, Batrakova EV, Kabanov AV, Gendelman HE, Elmquist WF, Persidsky Y (2007) Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 27(5):1033–1042CrossRefGoogle Scholar
  146. 146.
    Aweeka F, Jayewardene A, Staprans S, Bellibas ES, Kearney B, Lizak P, Novakovic-Agopian T, Price RW (1999) Failure to detect nelfinavir in the cerebrospinal fluid of HIV-1-infected patients with and without AIDS dementia complex. JAIDS J Acquir Immune Defic Syndr 20(1):39–43CrossRefGoogle Scholar
  147. 147.
    Bendayan R, Lee G, Bendayan M (2002) Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 57(5):365–380CrossRefGoogle Scholar
  148. 148.
    Sharma P, Garg S (2010) Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 62(4):491–502CrossRefGoogle Scholar
  149. 149.
    Tritel M, Resh MD (2001) The late stage of human immunodeficiency virus type 1 assembly is an energy-dependent process. J Virol 75(12):5473–5481CrossRefGoogle Scholar
  150. 150.
    Miller DW, Batrakova EV, Waltner TO, Alakhov VY, Kabanov AV (1997) Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug Chem 8(5):649–657CrossRefGoogle Scholar
  151. 151.
    Shaik N, Pan G, Elmquist WF (2008) Interactions of pluronic block copolymers on P-gp efflux activity: experience with HIV-1 protease inhibitors. J Pharm Sci 97(12):5421–5433CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Pallabita Chowdhury
    • 1
  • Prashanth K.B. Nagesh
    • 1
  • Santosh Kumar
    • 1
  • Meena Jaggi
    • 1
  • Subhash C. Chauhan
    • 1
  • Murali M. Yallapu
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations