Nanomaterials in Cancer Theranostics

  • Lei ZhuEmail author
  • Lily YangEmail author
  • Zhiyang Zhou
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Recent advances in the development of novel nanomaterials and evaluation of their biomedical applications have shown promises of those multifunctional nanomaterials in the development of new approaches for cancer detection and therapy. The unique physicochemical properties of nanomaterials, small size, and large surface-area-to-volume ratio endow them with novel multifunctional capabilities for cancer imaging, drug delivery, and cancer therapy, referred to as theranostics, which are different from the traditional diagnosis and therapy approaches. To facilitate the translation of nanomaterials as imaging agents and drug delivery carriers into clinical applications, great efforts have been made on designing and improving biocompatibility, stability, safety, drug loading ability, targeted delivery, imaging signals, and thermal- or photodynamic responses. With the development of companion new imaging techniques and therapeutic approaches, several nanomaterials have demonstrated great theranostic potential in image-guided therapy of diseases, especially in cancer therapy. In this review, the current status and perspective of nanoparticles in the development of cancer theranostic agents will be discussed with a focus on several representative nanomaterials, including magnetic iron oxide nanoparticles, gold nanoparticles, silica nanoparticles, polymeric nanoparticles, and carbon nanomaterials.


Nanomaterials Theranostics Imaging-guide therapy 


  1. 1.
    Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung BY, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res Dord 25(9):2097–2116CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics. Ca-Cancer J Clin 65(1):5–29CrossRefGoogle Scholar
  3. 3.
    Johnson L, Gunasekera A, Douek M (2010) Applications of nanotechnology in cancer. Discov Med 47:374–379Google Scholar
  4. 4.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71CrossRefGoogle Scholar
  5. 5.
    Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627CrossRefGoogle Scholar
  6. 6.
    Huang J, Wang LY, Zhong XD, Li YC, Yang LL, Mao H (2014) Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J Mater Chem B 2(33):5344–5351CrossRefGoogle Scholar
  7. 7.
    Li YC, Lin R, Wang LY, Huang J, Wu H, Cheng GJ, Zhou ZY, MacDonald T, Yang L, Mao H (2015) PEG-b-AGE polymer coated magnetic nanoparticle probes with facile functionalization and anti-fouling properties for reducing non-specific uptake and improving biomarker targeting. J Mater Chem B 3(17):3591–3603CrossRefGoogle Scholar
  8. 8.
    Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomed UK 9(1):121–134CrossRefGoogle Scholar
  9. 9.
    Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194CrossRefGoogle Scholar
  10. 10.
    Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913CrossRefGoogle Scholar
  11. 11.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12):6387–6392Google Scholar
  12. 12.
    Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65(13–14):1866–1879CrossRefGoogle Scholar
  13. 13.
    Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768CrossRefGoogle Scholar
  14. 14.
    Stockhofe K, Postema JM, Schieferstein H, Ross TL (2014) Radiolabeling of nanoparticles and polymers for PET imaging. Pharm (Basel) 7(4):392–418CrossRefGoogle Scholar
  15. 15.
    Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications a review. J Drug Target 6(3):167–174CrossRefGoogle Scholar
  16. 16.
    Wen G, Zhang XL, Chang RM, Xia Q, Cang P, Zhang Y (2002) Superparamagnetic iron oxide (Feridex)-enhanced MRI in diagnosis of focal hepatic lesions. Di Yi Jun Yi Da Xue Xue Bao 22(5):451–452Google Scholar
  17. 17.
    Clement O, Siauve N, Cuenod CA, Frija G (1998) Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 9(3):167–182CrossRefGoogle Scholar
  18. 18.
    Johnson L, Pinder SE, Douek M (2013) Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology 62(3):481–486CrossRefGoogle Scholar
  19. 19.
    Kernstine KH, Stanford W, Mullan BF, Rossi NP, Thompson BH, Bushnell DL, McLaughlin KA, Kern JA (1999) PET, CT, and MRI with Combidex for mediastinal staging in non-small cell lung carcinoma. Ann Thorac Surg 68(3):1022–1028CrossRefGoogle Scholar
  20. 20.
    Harisinghani MG, Saini S, Hahn PF, Weissleder R, Mueller PR (1998) MR imaging of lymph nodes in patients with primary abdominal and pelvic malignancies using ultrasmall superparamagnetic iron oxide (Combidex). Acad Radiol 5(Supplement 1):S167–S169CrossRefGoogle Scholar
  21. 21.
    Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13(6):1266–1276Google Scholar
  22. 22.
    Vogl TJ, Hammerstingl R, Schwarz W, Kummel S, Muller PK, Balzer T, Lauten MJ, Balzer JO, Mack MG, Schimpfky C, Schrem H, Bechstein WO, Neuhaus P, Felix R (1996) Magnetic resonance imaging of focal liver lesions. Comparison of the superparamagnetic iron oxide resovist versus gadolinium-DTPA in the same patient. Invest Radiol 31(11):696–708CrossRefGoogle Scholar
  23. 23.
    Reimer P, Rummeny EJ, Daldrup HE, Balzer T, Tombach B, Berns T, Peters PE (1995) Clinical results with Resovist: a phase 2 clinical trial. Radiology 195(2):489–496CrossRefGoogle Scholar
  24. 24.
    Campbell JL, Arora J, Cowell SF, Garg A, Eu P, Bhargava SK, Bansal V (2011) Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS ONE 6(7):e21857CrossRefGoogle Scholar
  25. 25.
    Smith JA, Costales AB, Jaffari M, Urbauer DL, Frumovitz M, Kutac CK, Tran H, Coleman RL (2015) Is it equivalent? Evaluation of the clinical activity of single agent Lipodox(R) compared to single agent Doxil(R) in ovarian cancer treatment. J Oncol Pharm PractGoogle Scholar
  26. 26.
    Barenholz Y (2012) Doxil (R)—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134CrossRefGoogle Scholar
  27. 27.
    O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C, Group CBCS (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449CrossRefGoogle Scholar
  28. 28.
    McTiernan A, Whelan J, Leahy M, Woll PJ (2006) A phase II nonrandomised open-label study of liposomal daunorubicin (DaunoXome) in advanced soft tissue sarcoma. Sarcoma 1:41080Google Scholar
  29. 29.
    Lowis S, Lewis I, Elsworth A, Weston C, Doz F, Vassal G, Bellott R, Robert J, Pein F, Ablett S, Pinkerton R, Frappaz D, United Kingdom Children’s Cancer Study Group New A, Societe Francaise d’Oncologie Pediatrique Pharmacology G (2006) A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. Br J Cancer 95(5):571–580Google Scholar
  30. 30.
    Rosenthal E, Poizot-Martin I, Saint-Marc T, Spano JP, Cacoub P, Group DNXS (2002) Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol 25(1):57–59CrossRefGoogle Scholar
  31. 31.
    Chou H, Lin H, Liu JM (2015) A tale of the two PEGylated liposomal doxorubicins. Onco Targets Ther 8:1719–1720Google Scholar
  32. 32.
    Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, Maria B, LaFollette S, Schumann GB, Cole BF, Howell SB (1999) A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 5(11):3394–3402Google Scholar
  33. 33.
    Jaeckle KA, Batchelor T, O’Day SJ, Phuphanich S, New P, Lesser G, Cohn A, Gilbert M, Aiken R, Heros D, Rogers L, Wong E, Fulton D, Gutheil JC, Baidas S, Kennedy JM, Mason W, Moots P, Russell C, Swinnen LJ, Howell SB (2002) An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J Neurooncol 57(3):231–239CrossRefGoogle Scholar
  34. 34.
    Phuphanich S, Maria B, Braeckman R, Chamberlain M (2007) A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt®) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J Neurooncol 81(2):201–208CrossRefGoogle Scholar
  35. 35.
    Mross K, Niemann B, Massing U, Drevs J, Unger C, Bhamra R, Swenson C (2004) Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol 54(6):514–524CrossRefGoogle Scholar
  36. 36.
    Leonard RC, Williams S, Tulpule A, Levine AM, Oliveros S (2009) Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast 18(4):218–224CrossRefGoogle Scholar
  37. 37.
    de Jonge MJ, Slingerland M, Loos WJ, Wiemer EA, Burger H, Mathijssen RH, Kroep JR, den Hollander MA, van der Biessen D, Lam MH, Verweij J, Gelderblom H (2010) Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 46(16):3016–3021CrossRefGoogle Scholar
  38. 38.
    Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, Nunez MI, Wistuba II, Erasmus JJ, Hicks ME, Grimm EA, Reuben JM, Baladandayuthapani V, Templeton NS, McMannis JD, Roth JA (2012) Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS ONE 7(4):e34833CrossRefGoogle Scholar
  39. 39.
    Chen LT, Von Hoff DD, Li CP, Wang-Gillam A, Bodoky G, Dean AP, Shan YS, Jameson GS, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner R, Chiu CF, Schwartsmann G, Siveke JT, Braiteh FS, Moyo VM, Belanger B, Bayever E (2015) Expanded analyses of napoli-1: Phase 3 study of MM-398 (nal-IRI), with or without 5-fluorouracil and leucovorin, versus 5-fluorouracil and leucovorin, in metastatic pancreatic cancer (mPAC) previously treated with gemcitabine-based therapy. J Clin Oncol 33(3):1Google Scholar
  40. 40.
    Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH, Cho EK (2014) A phase II trial of cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 74(2):277–282CrossRefGoogle Scholar
  41. 41.
    Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716CrossRefGoogle Scholar
  42. 42.
    Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250CrossRefGoogle Scholar
  43. 43.
    Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 111(31):11449–11454CrossRefGoogle Scholar
  44. 44.
    Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070CrossRefGoogle Scholar
  45. 45.
    Cheng J, Pun SH (2015) Polymeric biomaterials for cancer nanotechnology. Biomater Sci 3(7):891–893CrossRefGoogle Scholar
  46. 46.
    Leiro V, Garcia JP, Tomas H, Pego AP (2015) The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug Chem 26(7):1182–1197CrossRefGoogle Scholar
  47. 47.
    Müller H-J, Beier R, da Palma J, Lanvers C, Ahlke E, von Schütz V, Gunkel M, Horn A, Schrappe M, Henze G, Kranz K, Boos J (2002) PEG-asparaginase (Oncaspar) 2500 U/m2 BSA in reinduction and relapse treatment in the ALL/NHL-BFM protocols. Cancer Chemother Pharmacol 49(2):149–154CrossRefGoogle Scholar
  48. 48.
    Dinndorf PA, Gootenberg J, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist 12(8):991–998CrossRefGoogle Scholar
  49. 49.
    Xu H, Ma H, Yang P, Zhang X, Wu X, Yin W, Wang H, Xu D (2015) Targeted polymer-drug conjugates: current progress and future perspective. Colloids Surf B Biointerfaces 136:729–734CrossRefGoogle Scholar
  50. 50.
    Pang X, Du HL, Zhang HQ, Zhai YJ, Zhai GX (2013) Polymer-drug conjugates: present state of play and future perspectives. Drug Discov Today 18(23–24):1316–1322CrossRefGoogle Scholar
  51. 51.
    Canal F, Sanchis J, Vicent MJ (2011) Polymer–drug conjugates as nano-sized medicines. Curr Opin Biotechnol 22(6):894–900CrossRefGoogle Scholar
  52. 52.
    Choi KY, Liu G, Lee S, Chen XY (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4(2):330–342CrossRefGoogle Scholar
  53. 53.
    Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM, Kim IS, Kwon IC, Choi K, Jeong SY, Kim K, Park JH (2011) Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 5(11):8591–8599CrossRefGoogle Scholar
  54. 54.
    Xing R, Bhirde AA, Wang S, Sun X, Liu G, Hou Y, Chen X (2012) Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res 6(1):1–9CrossRefGoogle Scholar
  55. 55.
    Rafiyath SM, Rasul M, Lee B, Wei G, Lamba G, Liu D (2012) Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 1(1):10CrossRefGoogle Scholar
  56. 56.
    Vishnu P, Roy V (2011) Safety and efficacy of nab-paclitaxel in the treatment of patients with breast cancer. Breast Cancer (Auckl) 5:53–65Google Scholar
  57. 57.
    Chen LT, Von Hoff DD, Li CP, Wang-Gillam A, Bodoky G, Dean AP, Shan YS, Jameson GS, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner R, Chiu CF, Schwartsmann G, Siveke JT, Braiteh FS, Moyo VM, Belanger B, Bayever E (2015) Expanded analyses of napoli-1: Phase 3 study of MM-398 (nal-IRI), with or without 5-fluorouracil and leucovorin, versus 5-fluorouracil and leucovorin, in metastatic pancreatic cancer (mPAC) previously treated with gemcitabine-based therapy. J Clin Oncol 33(3)Google Scholar
  58. 58.
    Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305CrossRefGoogle Scholar
  59. 59.
    Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, Dravid VP (2015) Theranostic magnetic nanostructures (MNS) for cancer. Cancer Treat Res 166:51–83CrossRefGoogle Scholar
  60. 60.
    Muthiah M, Park IK, Cho CS (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236CrossRefGoogle Scholar
  61. 61.
    Tse BW, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling MT, Khatri A, Liu T, Thierry B, Russell PJ (2015) PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine (Lond) 10(3):375–386CrossRefGoogle Scholar
  62. 62.
    Peng XH, Qian XM, Mao H, Wang AY, Chen Z, Nie SM, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311–321Google Scholar
  63. 63.
    Bjornerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17(7):465–477CrossRefGoogle Scholar
  64. 64.
    Chen HW, Wang LY, Yeh J, Wu XY, Cao ZH, Wang YA, Zhang MM, Yang L, Mao H (2010) Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-P gamma MPS copolymer coating. Biomaterials 31(20):5397–5407CrossRefGoogle Scholar
  65. 65.
    Chen HW, Wang LY, Yu QQ, Qian WP, Tiwari D, Yi H, Wang AY, Huang J, Yang LL, Mao H (2013) Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer. Int J Nanomed 8:3781–3794Google Scholar
  66. 66.
    Lee GY, Qian WP, Wang LY, Wang YA, Staley CA, Satpathy M, Nie SM, Mao H, Yang LL (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7(3):2078–2089CrossRefGoogle Scholar
  67. 67.
    Zhou HY, Qian WP, Uckun FM, Wang LY, Wang YA, Chen HY, Kooby D, Yu Q, Lipowska M, Staley CA, Mao H, Yang L (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9(8):7976–7991CrossRefGoogle Scholar
  68. 68.
    Torres-Lugo M, Rinaldi C (2013) Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomed (Lond) 8(10):1689–1707CrossRefGoogle Scholar
  69. 69.
    Hilger I (2013) In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperth 29(8):828–834CrossRefGoogle Scholar
  70. 70.
    Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomed (Lond) 7(9):1443–1459CrossRefGoogle Scholar
  71. 71.
    Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head and neck cancer in mouse models. Theranostics 2:113–121CrossRefGoogle Scholar
  72. 72.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324CrossRefGoogle Scholar
  73. 73.
    Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB (2015) In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci 16(10):24417–24450CrossRefGoogle Scholar
  74. 74.
    Voinov MA, Pagan JOS, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133(1):35–41CrossRefGoogle Scholar
  75. 75.
    Jeong EH, Jung G, Hong CA, Lee H (2014) Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 37(1):53–59CrossRefGoogle Scholar
  76. 76.
    Webb JA, Bardhan R (2014) Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 6(5):2502–2530CrossRefGoogle Scholar
  77. 77.
    Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102CrossRefGoogle Scholar
  78. 78.
    Liu H, Xu YH, Wen SH, Chen Q, Zheng LF, Shen MW, Zhao JL, Zhang GX, Shi XY (2013) Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chem Eur J 19(20):6409–6416CrossRefGoogle Scholar
  79. 79.
    Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, Chen X, Nie Z (2013) Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7(6):5320–5329CrossRefGoogle Scholar
  80. 80.
    Khandekar SV, Kulkarni MG, Devarajan PV (2014) Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery. J Biomed Nanotechnol 10(1):143–153CrossRefGoogle Scholar
  81. 81.
    Chen Y, Li N, Yang Y, Liu Y (2015) A dual targeting cyclodextrin/gold nanoparticle conjugate as a scaffold for solubilization and delivery of paclitaxel. RSC Adv 5(12):8938–8941CrossRefGoogle Scholar
  82. 82.
    Li N, Chen Y, Zhang YM, Yang Y, Su Y, Chen JT, Liu Y (2014) d Polysaccharide-gold nanocluster supramolecular conjugates as a versatile platform for the targeted delivery of anticancer drugs. Sci Rep-Uk 4Google Scholar
  83. 83.
    Banu H, Stanley B, Faheem SM, Seenivasan R, Premkumar K, Vasanthakumar G (2014) Thermal chemosensitization of breast cancer cells to cyclophosphamide treatment using folate receptor targeted gold nanoparticles. Plasmonics 9(6):1341–1349CrossRefGoogle Scholar
  84. 84.
    You J, Zhang R, Zhang GD, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C (2012) Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J Control Release 158(2):319–328CrossRefGoogle Scholar
  85. 85.
    Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A (2015) In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15(2):842–848CrossRefGoogle Scholar
  86. 86.
    Hainfeld JF, O’Connor MJ, Lin P, Qian L, Slatkin DN, Smilowitz HM (2014) Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy. PLoS ONE 9(2):e88414CrossRefGoogle Scholar
  87. 87.
    Wang SJ, Huang P, Nie LM, Xing RJ, Liu DB, Wang Z, Lin J, Chen SH, Niu G, Lu GM, Chen XY (2013) Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 25(22):3055–3061CrossRefGoogle Scholar
  88. 88.
    Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361CrossRefGoogle Scholar
  89. 89.
    Oh MH, Yu JH, Kim I, Nam YS (2015) Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl Mater Interfaces 7(40):22578–22586CrossRefGoogle Scholar
  90. 90.
    Wang C, Cheng L, Liu Z (2013) Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 3(5):317–330CrossRefGoogle Scholar
  91. 91.
    Vankayala R, Lin CC, Kalluru P, Chiang CS, Hwang KC (2014) Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials 35(21):5527–5538CrossRefGoogle Scholar
  92. 92.
    Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, Chen SJ (2012) Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33(11):3270–3278CrossRefGoogle Scholar
  93. 93.
    Gao L, Fei J, Zhao J, Li H, Cui Y, Li J (2012) Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 6(9):8030–8040CrossRefGoogle Scholar
  94. 94.
    Chen R, Wang X, Yao X, Zheng X, Wang J, Jiang X (2013) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34(33):8314–8322CrossRefGoogle Scholar
  95. 95.
    Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333CrossRefGoogle Scholar
  96. 96.
    Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, Yesilbag Tonga G, Jackson LC, Rotello VM, Vachet RW (2016) Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10(5):5536–5542CrossRefGoogle Scholar
  97. 97.
    Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, Kickelbick G, Bals R, Nguyen J, Dinh QT (2017) Local effects on airway inflammation and systemic uptake of 5 nm PEGylated and citrated gold nanoparticles in asthmatic mice. Small 13(10)Google Scholar
  98. 98.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  99. 99.
    Albanese A, Chan WCW (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7):5478–5489CrossRefGoogle Scholar
  100. 100.
    Wang YC, Liu YJ, Luehmann H, Xia XH, Brown P, Jarreau C, Welch M, Xia YN (2012) Evaluating the pharmacokinetics and in vivo cancer targeting capability of au nanocages by positron emission tomography imaging. ACS Nano 6(7):5880–5888CrossRefGoogle Scholar
  101. 101.
    Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685CrossRefGoogle Scholar
  102. 102.
    Shirshahi V, Soltani M (2015) Solid silica nanoparticles: applications in molecular imaging. Contrast Media Mol Imaging 10(1):1–17CrossRefGoogle Scholar
  103. 103.
    Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312CrossRefGoogle Scholar
  104. 104.
    Wu X, Wu M, Zhao JX (2014) Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed UK 10(2):297–312CrossRefGoogle Scholar
  105. 105.
    Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337CrossRefGoogle Scholar
  106. 106.
    Douroumis D, Onyesom I, Maniruzzaman M, Mitchell J (2013) Mesoporous silica nanoparticles in nanotechnology. Crit Rev Biotechnol 33(3):229–245CrossRefGoogle Scholar
  107. 107.
    Iqbal MZ, Ma X, Chen T, Le Z, Ren W, Xianga L, Wu A (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T1 magnetic resonance imaging (MRI). J Mater Chem B 3:5172–5181CrossRefGoogle Scholar
  108. 108.
    Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, Zhang C (2014) Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomed 9:2527–2538Google Scholar
  109. 109.
    Knezevic NZ, Durand JO (2015) Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles. ChemPlusChem 80(1):26–36CrossRefGoogle Scholar
  110. 110.
    Chen F, Hong H, Shi S, Valdovinos HF, Barnhart TE, Cai W (2014) Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Eur J Nucl Med Mol I 41:S322–S322CrossRefGoogle Scholar
  111. 111.
    Muhammad F, Zhao J, Wang N, Guo M, Wang A, Chen L, Guo Y, Li Q, Zhu G (2014) Lethal drug combination: arsenic loaded multiple drug mesoporous silica for theranostic applications. Colloids Surf B Biointerfaces 123:506–514CrossRefGoogle Scholar
  112. 112.
    Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337CrossRefGoogle Scholar
  113. 113.
    Liu Y, Feng L, Liu T, Zhang L, Yao Y, Yu D, Wang L, Zhang N (2014) Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 6(6):3231–3242CrossRefGoogle Scholar
  114. 114.
    Shen J, Kim HC, Su H, Wang F, Wolfram J, Kirui D, Mai J, Mu C, Ji LN, Mao ZW, Shen H (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4(5):487–497CrossRefGoogle Scholar
  115. 115.
    Jia L, Li Z, Shen J, Zheng D, Tian X, Guo H, Chang P (2015) Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm 489(1–2):318–330CrossRefGoogle Scholar
  116. 116.
    Wang X, Liu Y, Wang S, Shi D, Zhou X, Wang C, Wu J, Zeng Z, Li Y, Sun J, Wang J, Zhang L, Teng Z, Lu G (2015) CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Appl Surf Sci 332:308–317CrossRefGoogle Scholar
  117. 117.
    Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897CrossRefGoogle Scholar
  118. 118.
    Zhang P, Huang H, Huang J, Chen H, Wang J, Qiu K, Zhao D, Ji L, Chao H (2015) Noncovalent ruthenium(II) complexes-single-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation. ACS Appl Mater Interfaces 7(41):23278–23290CrossRefGoogle Scholar
  119. 119.
    Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52CrossRefGoogle Scholar
  120. 120.
    de la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172CrossRefGoogle Scholar
  121. 121.
    Wenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14(11):1105–1112CrossRefGoogle Scholar
  122. 122.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773–780CrossRefGoogle Scholar
  123. 123.
    Hong G, Lee JC, Jha A, Diao S, Nakayama KH, Hou L, Doyle TC, Robinson JT, Antaris AL, Dai H, Cooke JP, Huang NF (2014) Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement. Circ Cardiovasc Imaging 7(3):517–525CrossRefGoogle Scholar
  124. 124.
    Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18(12):1841–1846CrossRefGoogle Scholar
  125. 125.
    Deng S, Zhang Y, Brozena AH, Mayes ML, Banerjee P, Chiou WA, Rubloff GW, Schatz GC, Wang Y (2011) Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat Commun 2:382CrossRefGoogle Scholar
  126. 126.
    Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56CrossRefGoogle Scholar
  127. 127.
    Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 6:2963–2979Google Scholar
  128. 128.
    Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660CrossRefGoogle Scholar
  129. 129.
    Liu Z, Robinson JT, Tabakman SM, Yang K, Dai HJ (2011) Carbon materials for drug delivery and cancer therapy. Mater Today 14(7–8):316–323CrossRefGoogle Scholar
  130. 130.
    Siu KS, Chen D, Zheng X, Zhang X, Johnston N, Liu Y, Yuan K, Koropatnick J, Gillies ER, Min WP (2014) Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials 35(10):3435–3442CrossRefGoogle Scholar
  131. 131.
    Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26(32):5646–5652CrossRefGoogle Scholar
  132. 132.
    Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713CrossRefGoogle Scholar
  133. 133.
    Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247CrossRefGoogle Scholar
  134. 134.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20CrossRefGoogle Scholar
  135. 135.
    Zhang LW, Gao S, Zhang F, Yang K, Ma QJ, Zhu L (2014) Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS Nano 8(12):12250–12258CrossRefGoogle Scholar
  136. 136.
    Wang Z, Niu G, Chen XY (2014) Polymeric materials for theranostic applications. Pharm Res Dord 31(6):1358–1376CrossRefGoogle Scholar
  137. 137.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliver Rev 58(15):1655–1670CrossRefGoogle Scholar
  138. 138.
    Couvreur P, Kante B, Roland M, Speiser P (1979) Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 68(12):1521–1524CrossRefGoogle Scholar
  139. 139.
    Couvreur P, Kante B, Lenaerts V, Scailteur V, Roland M, Speiser P (1980) Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci 69(2):199–202CrossRefGoogle Scholar
  140. 140.
    Kante B, Couvreur P, Dubois-Krack G, De Meester C, Guiot P, Roland M, Mercier M, Speiser P (1982) Toxicity of polyalkylcyanoacrylate nanoparticles I: free nanoparticles. J Pharm Sci 71(7):786–790CrossRefGoogle Scholar
  141. 141.
    Cai K, He X, Song Z, Yin Q, Zhang Y, Uckun FM, Jiang C, Cheng J (2015) Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J Am Chem Soc 137(10):3458–3461CrossRefGoogle Scholar
  142. 142.
    Fonseca C, Simoes S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83(2):273–286CrossRefGoogle Scholar
  143. 143.
    Danhier F, Lecouturier N, Vroman B, Jerome C, Marchand-Brynaert J, Feron O, Preat V (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133(1):11–17CrossRefGoogle Scholar
  144. 144.
    Araki T, Kono Y, Ogawara K, Watanabe T, Ono T, Kimura T, Higaki K (2012) Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer. Biol Pharm Bull 35(8):1306–1313CrossRefGoogle Scholar
  145. 145.
    Gao D, Gao L, Zhang C, Liu H, Jia B, Zhu Z, Wang F, Liu Z (2015) A near-infrared phthalocyanine dye-labeled agent for integrin alphavbeta6-targeted theranostics of pancreatic cancer. Biomaterials 53:229–238CrossRefGoogle Scholar
  146. 146.
    Chen H, Zhang X, Dai S, Ma Y, Cui S, Achilefu S, Gu Y (2013) Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3(9):633–649CrossRefGoogle Scholar
  147. 147.
    Zhao J, Wu C, Abbruzzese J, Hwang RF, Li C (2015) Cyclopamine-loaded core-cross-linked polymeric micelles enhance radiation response in pancreatic cancer and pancreatic stellate cells. Mol Pharm 12(6):2093–2100CrossRefGoogle Scholar
  148. 148.
    Camacho KM, Kumar S, Menegatti S, Vogus DR, Anselmo AC, Mitragotri S (2015) Synergistic antitumor activity of camptothecin-doxorubicin combinations and their conjugates with hyaluronic acid. J Control Release 210:198–207CrossRefGoogle Scholar
  149. 149.
    Simone EA, Zern BJ, Chacko AM, Mikitsh JL, Blankemeyer ER, Muro S, Stan RV, Muzykantov VR (2012) Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124. Biomaterials 33(21):5406–5413CrossRefGoogle Scholar
  150. 150.
    Huang J, Wang L, Lin R, Wang AY, Yang L, Kuang M, Qian W, Mao H (2013) Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 5(11):4632–4639CrossRefGoogle Scholar
  151. 151.
    Schluep T, Hwang J, Hildebrandt IJ, Czernin J, Choi CH, Alabi CA, Mack BC, Davis ME (2009) Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci USA 106(27):11394–11399CrossRefGoogle Scholar
  152. 152.
    Wu C, Bull B, Szymanski C, Christensen K, McNeill J (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2(11):2415–2423CrossRefGoogle Scholar
  153. 153.
    Capolla S, Garrovo C, Zorzet S, Lorenzon A, Rampazzo E, Spretz R, Pozzato G, Nunez L, Tripodo C, Macor P, Biffi S (2015) Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies. Int J Nanomed 10:4099–4109Google Scholar
  154. 154.
    Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, Park JH, Kim IS, Choi K, Kim SY, Kwon IC (2007) Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release 122(3):305–314CrossRefGoogle Scholar
  155. 155.
    Qiu Y, Palankar R, Echeverria M, Medvedev N, Moya SE, Delcea M (2013) Design of hybrid multimodal poly(lactic-co-glycolic acid) polymer nanoparticles for neutrophil labeling, imaging and tracking. Nanoscale 5(24):12624–12632CrossRefGoogle Scholar
  156. 156.
    Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206Google Scholar
  157. 157.
    Rolfe BE, Blakey I, Squires O, Peng H, Boase NR, Alexander C, Parsons PG, Boyle GM, Whittaker AK, Thurecht KJ (2014) Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J Am Chem Soc 136(6):2413–2419CrossRefGoogle Scholar
  158. 158.
    Huynh E, Leung BY, Helfield BL, Shakiba M, Gandier JA, Jin CS, Master ER, Wilson BC, Goertz DE, Zheng G (2015) In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10(4):325–332CrossRefGoogle Scholar
  159. 159.
    Yang Z, Zheng S, Harrison WJ, Harder J, Wen X, Gelovani JG, Qiao A, Li C (2007) Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: synthesis, characterization, and dual nuclear/optical imaging. Biomacromol 8(11):3422–3428CrossRefGoogle Scholar
  160. 160.
    Taratula O, Doddapaneni BS, Schumann C, Li XN, Bracha S, Milovancev M, Alani AWG, Taratule O (2015) Naphthalocyanine-based biodegradable polymeric nanoparticles for image-guided combinatorial phototherapy. Chem Mater 27(17):6155–6165CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of SurgeryEmory University School of MedicineAtlantaUSA
  2. 2.Xiangya School of MedicineCentral South UniversityChangshaChina

Personalised recommendations