Advertisement

The Interactions Between Engineered Nanomaterials and Biomolecules

  • Shasha Wang
  • Yunxia Ji
  • Kun Yin
  • Min Lv
  • Lingxin ChenEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

With the development and wide applications of engineered nanomaterials (ENMs), their impacts on human health have received increasing concerns. ENMs can enter human body through respiratory pathway, digestive tract, skin penetration, intravenous injection, and implantation, and then they are carried to distal organs via bloodstream and lymphatic functions to perturb physiological systems. It is very important to investigate the interactions between ENMs and biomolecules (the basic building blocks of the human body) such as phospholipid, protein, DNA, and some other small biological molecules. The chapter intends to discuss the chemical basis of interactions between ENMs and biomolecules, and the effects of the differences in surface morphology, composition, and modified groups of ENMs. The in-depth understanding of interactions between ENMs and biomolecules could lay foundations for further elucidating the effects of ENMs on human cells, organs, and physiological systems, which paves the way for human and environmental friendliness in the production and usage of ENMs.

Keywords

Engineered nanomaterials (ENMs) Biomolecules Phospholipid Protein DNA 

References

  1. 1.
    Liang WZ, Wang XJ, Yokojima S, Chen GH (2000) Electronic structures and optical properties of open and capped carbon nanotubes. J Am Chem Soc 122:11129–11137CrossRefGoogle Scholar
  2. 2.
    Eychmuller A (2000) Structure and photophysics of semiconductor nanocrystals. J Phys Chem B 104:6514–6528CrossRefGoogle Scholar
  3. 3.
    Leroueil PR, Hong SY, Mecke A, Baker JR, Orr BG, Holl MMB (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a janus face? Acc Chem Res 40:335–342CrossRefGoogle Scholar
  4. 4.
    Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332–5365CrossRefGoogle Scholar
  5. 5.
    Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun 44:5764–5766CrossRefGoogle Scholar
  6. 6.
    Zhang YY, Wang CM, Cheng Y, Xiang Y (2011) Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon 49:4511–4517CrossRefGoogle Scholar
  7. 7.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387CrossRefGoogle Scholar
  8. 8.
    He H, Pham-Huy LA, Dramou P, Xiao DL, Zuo PL, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290Google Scholar
  9. 9.
    Islam MS, Deng Y, Tong LY, Faisal SN, Roy AK, Minett AI, Gomes VG (2016) Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon 96:701–710CrossRefGoogle Scholar
  10. 10.
    Zheng TY, Bott S, Huo Q (2016) Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces 8:21585–21594CrossRefGoogle Scholar
  11. 11.
    Nagao A, Higashimine K, Huaman JLC, Iwamoto T, Matsumoto T, Inoue Y, Maenosono S, Miyamura H, Jeyadevan B (2015) Formation of Pt decorated Ni-Pt nanocubes through low temperature atomic diffusion—time-resolved elemental analysis of nanoparticle formation. Nanoscale 7:9927–9934CrossRefGoogle Scholar
  12. 12.
    Powell CJ, Werner WSM, Shard AG, Castner DG (2016) Evaluation of two methods for determining shell thicknesses of core-shell nanoparticles by X-ray photoelectron spectroscopy. J Phys Chem C Nanomater Interfaces 120:22730–22738CrossRefGoogle Scholar
  13. 13.
    Chao LC, Yang SH (2017) Growth and Auger electron spectroscopy characterization of donut-shaped ZnO nanostructures. Appl Surf Sci 253:7162–7165CrossRefGoogle Scholar
  14. 14.
    Chhoden T, Clausen PA, Larsen ST, Norgaard AW, Lauritsen FR (2015) Interactions between nanoparticles and lung surfactant investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 29:1080–1086CrossRefGoogle Scholar
  15. 15.
    Rao CNR, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Anal Chem 2:435–462CrossRefGoogle Scholar
  16. 16.
    Zimbone M, Calcagno L, Messina G, Baeri P, Compagnini G (2011) Dynamic light scattering and UV–vis spectroscopy of gold nanoparticles solution. Mater Lett 65:2906–2909CrossRefGoogle Scholar
  17. 17.
    Ding Y, Wang S, Li J, Chen L (2016) Nanomaterial-based optical sensors for mercury ions. TrAC Trends Anal Chem 82:175–190CrossRefGoogle Scholar
  18. 18.
    Chen LX, Fu XL, Li JH (2013) Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. Nanoscale 5:5905–5911CrossRefGoogle Scholar
  19. 19.
    Yao H, Dai QL, You ZP (2015) Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr Build Mater 101:1078–1087CrossRefGoogle Scholar
  20. 20.
    Zhao PY, Huang BY, Gu KJ, Zou N, Pan CP (2015) Analysis of triallate residue and degradation rate in wheat and soil by liquid chromatography coupled to tandem mass spectroscopy detection with multi-walled carbon nanotubes. Int J Environ Anal Chem 95:1413–1423CrossRefGoogle Scholar
  21. 21.
    Kim HJ, Lee HC, Lee JS (2007) Al-27 triple-quantum magic-angle spinning nuclear magnetic resonance characterization of nanostructured alumina materials. J Phys Chem C 111:1579–1583CrossRefGoogle Scholar
  22. 22.
    Lang XF, You TT, Yin PG, Tan EZ, Zhang Y, Huang YF, Zhu HP, Ren B, Guo L (2013) In situ identification of crystal facet-mediated chemical reactions on tetrahexahedral gold nanocrystals using surface-enhanced Raman spectroscopy. Phys Chem Chem Phys 15:19337–19342CrossRefGoogle Scholar
  23. 23.
    Schwerha JJ (2010) Fantastic voyage and opportunities of engineered nanomaterials: what are the potential risks of occupational exposures. J Occup Environ Med 52:943–946CrossRefGoogle Scholar
  24. 24.
    Yokel RA, MacPhail RC (2011) Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 6:7CrossRefGoogle Scholar
  25. 25.
    Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, Kisin ER, Kotchey GP, Gou PP, Sparvero LJ, Ray P, Mallampalli RK, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA, Kagan VE (2012) Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6:4147–4156CrossRefGoogle Scholar
  26. 26.
    Mu QX, Jiang GB, Chen LX, Zhou HY, Fourches D, Tropsha A, Yan B (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–7781CrossRefGoogle Scholar
  27. 27.
    Ambike A, Rosilio V, Stella B, Lepêtre-Mouelhi S, Couvreur P (2011) Interaction of self-assembled squalenoyl gemcitabine nanoparticles with phospholipid–cholesterol monolayers mimicking a biomembrane. Langmuir 27:4891–4899CrossRefGoogle Scholar
  28. 28.
    Xu JW, Yang LL, Han YY, Wang YM, Zhou XM, Gao ZD, Song YY, Schmuki P (2016) Carbon-decorated TiO2 nanotube membranes: a renewable nanofilter for charge-selective enrichment of proteins. ACS Appl Mater Interfaces 8:21997–22004CrossRefGoogle Scholar
  29. 29.
    Munk M, Ladeira LO, Carvalho BC, Camargo LSA, Raposo NRB, Serapiao RV, Quintao CCR, Silva SR, Soares JS, Jorio A, Brandao HM (2016) Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes. Sci Rep 6:33588CrossRefGoogle Scholar
  30. 30.
    Cazorla C (2010) Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene. Thin Solid Films 518:6951–6961CrossRefGoogle Scholar
  31. 31.
    Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefGoogle Scholar
  32. 32.
    Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396:983–1002CrossRefGoogle Scholar
  33. 33.
    Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  34. 34.
    McCallum EA, Hyung H, Do TA, Huang CH, Kim JH (2009) Adsorption, desorption, and steady-state removal of 17 beta-estradiol by nanofiltration membranes. J Membr Sci 319:38–43CrossRefGoogle Scholar
  35. 35.
    Guo L, Von Dem Bussche A, Buechner M, Yan AH, Kane AB, Hurt RH (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727CrossRefGoogle Scholar
  36. 36.
    Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M (2008) Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179:78–84CrossRefGoogle Scholar
  37. 37.
    Zhong XL, Slough WJ, Pandey R, Friedrich C (2012) Interaction of nucleobases with silicon nanowires: a first-principles study. Chem Phys Lett 553:55–58CrossRefGoogle Scholar
  38. 38.
    Saha S, Sarkar P (2014) Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials. Phys Chem Chem Phys 16:15355–15366CrossRefGoogle Scholar
  39. 39.
    Shen WZ, Wang H, Guan RG, Li ZJ (2008) Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid. Colloid Surface A 331:263–267CrossRefGoogle Scholar
  40. 40.
    Lu YM, Gong QM, Lu FP, Liang J (2014) Synthesis of porous carbon nanotubes/activated carbon composite spheres and their application for vitamin B12 adsorption. Sci Eng Compos Mater 21:165–171CrossRefGoogle Scholar
  41. 41.
    Casey A, Davoren M, Herzog E, Lyng FM, Byrne HJ, Chambers G (2007) Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing. Carbon 45:34–40CrossRefGoogle Scholar
  42. 42.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204CrossRefGoogle Scholar
  44. 44.
    Abanin DA, Lee PA, Levitov LS (2006) Spin-filtered edge states and quantum Hall effect in graphene. Phys Rev Lett 96:176803CrossRefGoogle Scholar
  45. 45.
    Rajesh C, Majumder C, Mizuseki H, Kawazoe YA (2009) Theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J Chem Phys 130:124911CrossRefGoogle Scholar
  46. 46.
    Mukhopadhyay S, Scheicher RH, Pandey R, Karna SP (2011) Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J Phys Chem Lett 2:2442–2447CrossRefGoogle Scholar
  47. 47.
    Akdim B, Pachter R, Day PN, Kim SS, Naik RR (2012) On modeling biomolecular-surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces. Nanotechnology 23:165703CrossRefGoogle Scholar
  48. 48.
    Ortmann F, Schmidt WG, Bechstedt F (2005) Attracted by long-range electron correlation: adenine on graphite. Phys Rev Lett 95:186101CrossRefGoogle Scholar
  49. 49.
    Le D, Kara A, Schröder E, Hyldgaard P, Rahman TS (2012) Physisorption of nucleobases on graphene: a comparative van der Waals study. J Phys Condens Mater 24:424210CrossRefGoogle Scholar
  50. 50.
    Gowtham S, Scheicher RH, Pandey R, Karna SP, Ahuja R (2008) First-principles study of physisorption of nucleic acid bases on small-diametercarbon nanotubes. Nanotechnology 19:125701CrossRefGoogle Scholar
  51. 51.
    Mukhopadhyay S, Gowtham S, Scheicher RH, Pandey R, Karna SP (2010) Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 21:165703CrossRefGoogle Scholar
  52. 52.
    Shjh CJ, Lin CT, Wu SM (2010) Adsorption of vitamin E on mesoporous titania nanocrystals. Mater Res Bull 45:863–869CrossRefGoogle Scholar
  53. 53.
    Golubeva OY, Pavlova SV, Yakovlev AV (2015) Adsorption and in vitro release of vitamin B-1 by synthetic nanoclays with montmorillonite structure. Appl Clay Sci 112:10–16CrossRefGoogle Scholar
  54. 54.
    Ganji MD, Skardi FSE (2014) Adsorption of glucose molecule onto platinum-decorated single-walled carbon nanotubes: a dispersion-corrected DFT simulation. Fuller Nanotub Carbon Nanostruct 23:273–282CrossRefGoogle Scholar
  55. 55.
    Wang WW, Jiang CJ, Zhu LD, Liang NN, Liu XJ, Jia JB, Zhang CK, Zhai SM, Zhang B (2014) Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring. Int J Mol Sci 15:15981–15993CrossRefGoogle Scholar
  56. 56.
    Shi XH, Kong Y, Gao HJ (2008) Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane. Acta Mech Sin 24:161–169CrossRefGoogle Scholar
  57. 57.
    Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8:2751–2756CrossRefGoogle Scholar
  58. 58.
    Jing BX, Zhu YX (2011) Disruption of supported lipid bilayers by semihydrophobic nanoparticles. J Am Chem Soc 133:10983–10989CrossRefGoogle Scholar
  59. 59.
    Bothun GD (2008) Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnol 6:13CrossRefGoogle Scholar
  60. 60.
    Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583CrossRefGoogle Scholar
  61. 61.
    Ábrahám N, Csapó E, Bohus G, Dékány I (2014) Interaction of biofunctionalized gold nanoparticles with model phospholipid membranes. Colloid Polym Sci 292:2715–2725CrossRefGoogle Scholar
  62. 62.
    Li Y, Gu N (2010) Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B 114:2749–2754CrossRefGoogle Scholar
  63. 63.
    Kettiger H, Québatte G, Perrone B, Huwyler J (2016) Interactions between silica nanoparticles and phospholipid membranes. BBA Biomembr 1858:2163–2170CrossRefGoogle Scholar
  64. 64.
    Li Y, Chen X, Gu N (2008) Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B 112:6647–16653Google Scholar
  65. 65.
    Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7:614–619CrossRefGoogle Scholar
  66. 66.
    Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637CrossRefGoogle Scholar
  67. 67.
    De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753CrossRefGoogle Scholar
  68. 68.
    Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920CrossRefGoogle Scholar
  69. 69.
    Boulos SP, Davis TA, Yang JA, Lohse SE, Alkilany AM, Holland LA, Murphy CJ (2013) Article-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir 29:14984–14996CrossRefGoogle Scholar
  70. 70.
    Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721CrossRefGoogle Scholar
  71. 71.
    Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807CrossRefGoogle Scholar
  72. 72.
    Gagner JE, Lopez MD, Dordick JS, Siegel RW (2011) Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32:7241–7252CrossRefGoogle Scholar
  73. 73.
    Hung A, Mwenifumbo S, Mager M, Kuna JJ, Stellacci F, Yarovsky I, Stevens MM (2011) Ordering surfaces on the nanoscale: implications for protein adsorption. J Am Chem Soc 133:1438–1450CrossRefGoogle Scholar
  74. 74.
    Wu X, Narsimhan G (2008) Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. BBA Proteomics 1784:1694–1701CrossRefGoogle Scholar
  75. 75.
    Shao Q, Hall CK (2016) Protein adsorption on nanoparticles: model development using computer simulation. J Phys Condens Mater 28:414019CrossRefGoogle Scholar
  76. 76.
    Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res 14:1–13CrossRefGoogle Scholar
  77. 77.
    Tavanti F, Pedone A, Menziani MC (2015) Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J Phys Chem C 119:22172–22180CrossRefGoogle Scholar
  78. 78.
    Shen JW, Wu T, Wang Q, Kang Y (2008) Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials 29:3847–3855CrossRefGoogle Scholar
  79. 79.
    Noon WH, Kong YF, Ma JP (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99:6466–6470CrossRefGoogle Scholar
  80. 80.
    Lj Liang, Wang Q, Wu T, Shen JW, Kang Y (2009) Molecular dynamics simulation on stability of insulin on graphene. Chin J Chem Phys 22:627–634CrossRefGoogle Scholar
  81. 81.
    Chiu CC, Dieckmann GR, Nielsen SO (2008) Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B 112:16326–16333CrossRefGoogle Scholar
  82. 82.
    Chiu CC, Dieckmann GR, Nielsen SO (2009) Role of peptide-peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study. Biopolymers 92:156–163CrossRefGoogle Scholar
  83. 83.
    Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63–88CrossRefGoogle Scholar
  84. 84.
    Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503CrossRefGoogle Scholar
  85. 85.
    Prado-Gotor R, Grueso E (2011) A kinetic study of the interaction of DNA with gold nanoparticles: mechanistic aspects of the interaction. Phys Chem Chem Phys 13:1479–1489CrossRefGoogle Scholar
  86. 86.
    Komarov PV, Zherenkova LV, Khalatur PG (2008) Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction. J Chem Phys 128:124909CrossRefGoogle Scholar
  87. 87.
    Akhlaghi Y, Kompany-Zareh M, Ebrahimi S (2015) Model-based approaches to investigate the interactions between unmodified gold nanoparticles and DNA strands. Sensor Actuators B Chem 221:45–54CrossRefGoogle Scholar
  88. 88.
    Wu Y, Liu LK, Liang ZQ, Shen ZM, Zhu XL (2011) Colorimetric and electrochemical study on the interaction between gold nanoparticles and unmodified DNA. Curr Nanosci 7:359–365CrossRefGoogle Scholar
  89. 89.
    Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318CrossRefGoogle Scholar
  90. 90.
    Lazarus GG, Revaprasadu N, Lopez-Viota J, Singh M (2014) The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its’ interaction with DNA. Colloids Surf B 121:425–431CrossRefGoogle Scholar
  91. 91.
    Sun LP, Zhang ZW, Wang S, Zhang JF, Li H, Ren L, Weng J, Zhang QQ (2009) Effect of pH on the interaction of gold nanoparticles with DNA and application in the detection of human p53 gene mutation. Nanoscale Res Lett 4:216–220CrossRefGoogle Scholar
  92. 92.
    Foley EA, Carter JD, Shan F, Guo T (2005) Enhanced relaxation of nanoparticl-bound supercoiled DNA in X-ray radiation. Chem Commun 3192–3194Google Scholar
  93. 93.
    Yang J, Lee JY, Too HP, Chow GM (2006) Inhibition of DNA hybridization by small metal nanoparticles. Biophys Chem 120:87–95CrossRefGoogle Scholar
  94. 94.
    McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629CrossRefGoogle Scholar
  95. 95.
    Wang Z, Fang H, Wang S, Zhang F, Wang DG (2015) Simulating molecular interactions of carbon nanoparticles with a double-stranded DNA fragment. J Chem 2015:1–6Google Scholar
  96. 96.
    Johnson RR, Johnson ATC, Klein ML (2008) Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett 8:69–75CrossRefGoogle Scholar
  97. 97.
    Roxbury D, Mittal J, Jagota A (2012) Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett 12:1464–1469CrossRefGoogle Scholar
  98. 98.
    Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control. Nanotechnology 20:395101CrossRefGoogle Scholar
  99. 99.
    Qiu XY, Ke FY, Timsina R, Khripin CY, Zheng M (2016) Attractive interactions between DNA-carbon nanotube hybrids in monovalent salts. J Phys Chem C 120:13831–13835CrossRefGoogle Scholar
  100. 100.
    Gladchenko GO, Karachevtsev MV, Leontiev VS, Valeev VA, Glamazda AY, Plokhotnichenko AM, Stepanian SG (2006) Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution. Mol Phys 104:3193–3201CrossRefGoogle Scholar
  101. 101.
    Gao HJ, Kong Y, Cui DX, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473CrossRefGoogle Scholar
  102. 102.
    Xie YH, Kong Y, Soh AK, Gao HJ (2007) Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane. J Chem Phys 127:225101CrossRefGoogle Scholar
  103. 103.
    Pei QX, Lim CG, Cheng Y, Gao HJ (2008) Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes. J Chem Phys 129:125101CrossRefGoogle Scholar
  104. 104.
    Alshehri MH, Cox BJ, Hill JM (2012) Interaction of double-stranded DNA inside single-walled carbon nanotubes. J Math Chem 50:2512–2526CrossRefGoogle Scholar
  105. 105.
    Xue TY, Cui XQ, Guan WM, Wang QY, Liu C, Wang HT, Qi K, Singh DJ, Zheng WT (2014) Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing. Biosens Bioelectron 58:374–379CrossRefGoogle Scholar
  106. 106.
    Wang LJ, Tian JN, Huang Y, Lin XW, Yang W, Zhao YC, Zhao SL (2016) Homogenous fluorescence polarization assay for the DNA of HIV A T7 by exploiting exonuclease-assisted quadratic recycling amplification and the strong interaction between graphene oxide and ssDNA. Microchim Acta 183:2147–2153CrossRefGoogle Scholar
  107. 107.
    He Y, Jiao BN, Tang HW (2014) Interaction of single-stranded DNA with graphene oxide: fluorescence study and its application for S1 nuclease detection. RSC Adv 4:18294–18300CrossRefGoogle Scholar
  108. 108.
    Zhang H, Huang H, Lin ZH, Su XG (2014) A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction. Anal Bioanal Chem 406:6925–6932CrossRefGoogle Scholar
  109. 109.
    Lee J, Yim Y, Kim S, Choi MH, Choi BS, Lee Y, Min DH (2016) In-depth investigation of the interaction between DNA and nano-sized graphene oxide. Carbon 97:92–98CrossRefGoogle Scholar
  110. 110.
    Wang QS, Yang L, Fang TT, Wu S, Liu P, Min XM, Li X (2011) Interactions between CdSe/CdS quantum dots and DNA through spectroscopic and electrochemical methods. Appl Surf Sci 257:9747–9751CrossRefGoogle Scholar
  111. 111.
    Xu Q, Wang JH, Wang Z, Yin ZH, Yang Q, Zhao YD (2008) Interaction of CdTe quantum dots with DNA. Electrochem Commun 10:1337–1339CrossRefGoogle Scholar
  112. 112.
    Stanisavljevic M, Chomoucka J, Dostalova S, Krizkova S, Vaculovicova M, Adam V, Kizek R (2014) Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 35:2587–2592CrossRefGoogle Scholar
  113. 113.
    Anandampillai S, Zhang X, Sharma P, Lynch GC, Franchek MA, Larin KV (2008) Quantum dot-DNA interaction: computational issues and preliminary insights on use of quantum dots as biosensors. Comput Methods Appl Mech Eng 197:3378–3385CrossRefGoogle Scholar
  114. 114.
    Mahtab R, Sealey SM, Hunyadi SE, Kinard B, Ray T, Murphy CJ (2007) Influence of the nature of quantum dot surface cations on interactions with DNA. J Inorg Biochem 101:559–564CrossRefGoogle Scholar
  115. 115.
    Li MY, Li J, Sun L, Zhang XL, Jin WR (2012) Measuring interactions and conformational changes of DNA molecules using electrochemiluminescence resonance energy transfer in the conjugates consisting of luminol, DNA and quantum dot. Electrochim Acta 80:171–179CrossRefGoogle Scholar
  116. 116.
    Hu XF, Zhang XL, Jin WR (2013) Applications of electrochemiluminescence resonance energy transfer between CdSe/ZnS quantum dots and cyanine dye (Cy5) molecules in evaluating interactions and conformational changes of DNA molecules. Electrochim Acta 94:367–373CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shasha Wang
    • 1
  • Yunxia Ji
    • 1
  • Kun Yin
    • 1
  • Min Lv
    • 1
  • Lingxin Chen
    • 1
    Email author
  1. 1.Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina

Personalised recommendations