Advertisement

Nanoparticles-Induced Oxidative Stress

  • Hainan Sun
  • Guizhen Yan
  • Hongyu ZhouEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

With the growing usage of nanoparticles (NPs) in industry, biomedicine, and daily life, an increasing chance for humans to be exposed to NPs has been issued. However, the basis of toxicity of most manufactured NPs is not fully understood. An important mechanism of nanotoxicity is reactive oxygen species (ROS) formation, which could cause oxidative stress, inflammation, and consequent cell death. NPs can interact with H2O or O2 in the physiological environment, resulting in the direct production of ROS, or affect the function of mitochondria and NADPH oxidase, resulting in the indirect production of ROS. ROS generation and oxidative stress were depicted by the hierarchical oxidative stress model. Critical determinants that can affect the generation of ROS, including NPs’ composition, size, shape, and surface chemistry, are briefly discussed in this review.

Keywords

Oxidative stress Nanoparticles Nanotoxicity Reactive oxygen species Physicochemical properties 

References

  1. 1.
    Weir A, Westerhoff P, Fabricius L, Hristovski K, Von GN (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250CrossRefGoogle Scholar
  2. 2.
    Weiss J, Takhistov P, Mcclements DJ (2006) Functional materials in food nanotechnology. J Food Sci 59(6):274–275Google Scholar
  3. 3.
    Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52CrossRefGoogle Scholar
  4. 4.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRefGoogle Scholar
  5. 5.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782CrossRefGoogle Scholar
  6. 6.
    Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330CrossRefGoogle Scholar
  7. 7.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316CrossRefGoogle Scholar
  8. 8.
    Judy JD, Unrine JM, Bertsch PM (2010) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781CrossRefGoogle Scholar
  9. 9.
    Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6(1):65–71CrossRefGoogle Scholar
  10. 10.
    Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34(3):559–567CrossRefGoogle Scholar
  11. 11.
    Pietroiusti A (2012) Health implications of engineered nanomaterials. Nanoscale 4(4):1231–1247CrossRefGoogle Scholar
  12. 12.
    De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149CrossRefGoogle Scholar
  13. 13.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  14. 14.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRefGoogle Scholar
  15. 15.
    Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134CrossRefGoogle Scholar
  16. 16.
    Kaweeteerawat C, Ivask A, Liu R, Zhang H, Chang CH, Low-Kam C, Fischer H, Ji Z, Pokhrel S, Cohen Y (2015) Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environ Sci Technol 49(2):1105–1112CrossRefGoogle Scholar
  17. 17.
    Zhang H, Pokhrel S, Ji Z, Meng H, Wang X, Lin S, Chang CH, Li L, Li R, Sun B (2014) PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co3O4 p-type semiconductor in cells and the lung. J Am Chem Soc 136(17):6406–6420CrossRefGoogle Scholar
  18. 18.
    Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D, Xue M, Wang X, Lin S, Ji Z (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134(38):15790–15804CrossRefGoogle Scholar
  19. 19.
    Xiong S, George S, Ji Z, Lin S, Yu H, Damoiseaux R, France B, Ng KW, Loo SCJ (2013) Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Arch Toxicol 87(1):99–109CrossRefGoogle Scholar
  20. 20.
    Ma H, Wallis LK, Diamond S, Li S, Canas-Carrell J, Parra A (2014) Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut 193:165–172CrossRefGoogle Scholar
  21. 21.
    Li Y, Zhang W, Niu J, Chen Y (2013) Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ Sci Technol 47(18):10293–10301Google Scholar
  22. 22.
    Jensen P (1966) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles I pH dependency and hydrogen peroxide formation. Biochim Biophys (BBA) Acta Enzymol Biol Oxid 122(2):157–166Google Scholar
  23. 23.
    Murphy M (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefGoogle Scholar
  24. 24.
    Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35(9):505–513CrossRefGoogle Scholar
  25. 25.
    Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313CrossRefGoogle Scholar
  26. 26.
    Hsin Y-H, Chen C-F, Huang S, Shih T-S, Lai P-S, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139CrossRefGoogle Scholar
  27. 27.
    George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6(5):3745–3759CrossRefGoogle Scholar
  28. 28.
    Freyre-Fonseca V, Delgado-Buenrostro NL, Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T, Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta C (2011) Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett 202(2):111–119CrossRefGoogle Scholar
  29. 29.
    Tay CY, Fang W, Setyawati MI, Chia SL, Tan KS, Hong CHL, Leong DT (2014) Nano-hydroxyapatite and nano-titanium dioxide exhibit different sub-cellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces 6(9):6248–6256CrossRefGoogle Scholar
  30. 30.
    Nishiyama N, Nakagishi Y, Morimoto Y, Lai P-S, Miyazaki K, Urano K, Horie S, Kumagai M, Fukushima S, Cheng Y (2009) Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release 133(3):245–251CrossRefGoogle Scholar
  31. 31.
    Mo Y, Wan R, Chien S, Tollerud DJ, Zhang Q (2009) Activation of endothelial cells after exposure to ambient ultrafine particles: the role of NADPH oxidase. Toxicol Appl Pharmacol 236(2):183–193CrossRefGoogle Scholar
  32. 32.
    Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5(9):6861–6870CrossRefGoogle Scholar
  33. 33.
    Ye S, Wang Y, Jiao F, Zhang H, Lin C, Wu Y, Zhang Q (2011) The role of NADPH oxidase in multi-walled carbon nanotubes-induced oxidative stress and cytotoxicity in human macrophages. J Nanosci Nanotechnol 11(5):3773–3781CrossRefGoogle Scholar
  34. 34.
    Culcasi M, Benameur L, Mercier A, Lucchesi C, Rahmouni H, Asteian A, Casano G, Botta A, Kovacic H, Pietri S (2012) EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem Biol Interact 199(3):161–176CrossRefGoogle Scholar
  35. 35.
    Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefGoogle Scholar
  36. 36.
    Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y-P (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368CrossRefGoogle Scholar
  37. 37.
    Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu R-S, Chang Y-Z, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2):402–411CrossRefGoogle Scholar
  38. 38.
    Eom H-J, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342CrossRefGoogle Scholar
  39. 39.
    Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118CrossRefGoogle Scholar
  40. 40.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162CrossRefGoogle Scholar
  41. 41.
    Li Y, Sun L, Jin M, Du Z, Liu X, Guo C, Li Y, Huang P, Sun Z (2011) Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol In Vitro 25(7):1343–1352CrossRefGoogle Scholar
  42. 42.
    Könczöl M, Weiss A, Stangenberg E, Gminski R, Garcia-Käufer M, Gieré R, Merfort I, Mersch-Sundermann V (2013) Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chem Res Toxicol 26(5):693–702CrossRefGoogle Scholar
  43. 43.
    Qu G, Liu S, Zhang S, Wang L, Wang X, Sun B, Yin N, Gao X, Xia T, Chen J-J (2013) Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 7(7):5732–5745CrossRefGoogle Scholar
  44. 44.
    Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78CrossRefGoogle Scholar
  45. 45.
    George S, Xia TA, Rallo R, Zhao Y, Ji ZX, Lin SJ, Wang X, Zhang HY, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nal AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805–1817CrossRefGoogle Scholar
  46. 46.
    Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(11):1–17Google Scholar
  47. 47.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619CrossRefGoogle Scholar
  48. 48.
    Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4(12):1409–1420CrossRefGoogle Scholar
  49. 49.
    Lin Y-S, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842CrossRefGoogle Scholar
  50. 50.
    Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330CrossRefGoogle Scholar
  51. 51.
    Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728CrossRefGoogle Scholar
  52. 52.
    Hamilton R, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6(1):35CrossRefGoogle Scholar
  53. 53.
    Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43(16):6349–6356CrossRefGoogle Scholar
  54. 54.
    Persson H, Kobler C, Molhave K, Samuelson L, Tegenfeldt JO, Oredsson S, Prinz CN (2013) Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9(23):4006–4016CrossRefGoogle Scholar
  55. 55.
    Wan J, Wang J-H, Liu T, Xie Z, Yu X-F, Li W (2015) Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci Rep 5:11398CrossRefGoogle Scholar
  56. 56.
    Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C, Pierrat S, Sönnichsen C, Wegener J, Janshoff A (2011) Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 5(2):254–268CrossRefGoogle Scholar
  57. 57.
    Hao N, Yang H, Li L, Li L, Tang F (2014) The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New J Chem 38(9):4258–4266CrossRefGoogle Scholar
  58. 58.
    Andelman T, Gordonov S, Busto G, Moghe PV, Riman RE (2010) Synthesis and cytotoxicity of Y2O3 nanoparticles of various morphologies. Nanoscale Res Lett 5(2):263–273CrossRefGoogle Scholar
  59. 59.
    Zhang Y, Tekobo S, Tu Y, Zhou Q, Jin X, Dergunov SA, Pinkhassik E, Yan B (2012) Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces 4(8):4099–4105CrossRefGoogle Scholar
  60. 60.
    McLaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131(35):12540–12541CrossRefGoogle Scholar
  61. 61.
    Redhead H, Davis S, Illum L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70(3):353–363CrossRefGoogle Scholar
  62. 62.
    Neal JC, Stolnik S, Garnett MC, Davis SS, Illum L (1998) Modification of the copolymers poloxamer 407 and poloxamine 908 can affect the physical and biological properties of surface modified nanospheres. Pharm Res 15(2):318–324CrossRefGoogle Scholar
  63. 63.
    Xian Y, Hu Y, Liu F, Xian Y, Wang H, Jin L (2006) Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosens Bioelectron 21(10):1996–2000CrossRefGoogle Scholar
  64. 64.
    Lin Y, Lu F, Tu Y, Ren Z (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4(2):191–195CrossRefGoogle Scholar
  65. 65.
    Artyukhin AB, Bakajin O, Stroeve P, Noy A (2004) Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. Langmuir 20(4):1442–1448CrossRefGoogle Scholar
  66. 66.
    Islam M, Rojas E, Bergey D, Johnson A, Yodh A (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273CrossRefGoogle Scholar
  67. 67.
    Zhang B, Xing Y, Li Z, Zhou H, Mu Q, Yan B (2009) Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9(6):2280–2284CrossRefGoogle Scholar
  68. 68.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318Google Scholar
  69. 69.
    Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Del Rev 55(3):403–419CrossRefGoogle Scholar
  70. 70.
    Moghadam BY, Hou W-C, Corredor C, Westerhoff P, Posner JD (2012) Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir 28(47):16318–16326CrossRefGoogle Scholar
  71. 71.
    Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3(2):410–420CrossRefGoogle Scholar
  72. 72.
    Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9):5421–5429CrossRefGoogle Scholar
  73. 73.
    Hirano A, Uda K, Maeda Y, Akasaka T, Shiraki K (2010) One-dimensional protein-based nanoparticles induce lipid bilayer disruption: carbon nanotube conjugates and amyloid fibrils. Langmuir 26(22):17256–17259CrossRefGoogle Scholar
  74. 74.
    Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, J-l Berge-lefranc, Botta A, Wiesner MR, J-y Bottero (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study†. Environ Sci Technol 40(14):4367–4373CrossRefGoogle Scholar
  75. 75.
    Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5(9):7263–7276CrossRefGoogle Scholar
  76. 76.
    Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H, Rietjens IM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25CrossRefGoogle Scholar
  77. 77.
    Chompoosor A, Saha K, Ghosh PS, Macarthy DJ, Miranda OR, Zhu ZJ, Arcaro KF, Rotello VM (2010) The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 6(20):2246–2249CrossRefGoogle Scholar
  78. 78.
    Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26(19):15399–15408CrossRefGoogle Scholar
  79. 79.
    Li S, Zhai S, Liu Y, Zhou H, Wu J, Jiao Q, Zhang B, Zhu H, Yan B (2015) Experimental modulation and computational model of nano-hydrophobicity. Biomaterials 52:312–317CrossRefGoogle Scholar
  80. 80.
    Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347CrossRefGoogle Scholar
  81. 81.
    Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W, Watanabe F, Mustafa T, Biris AS, Ali SF (2011) Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 Cells. ACS Nano 5(9):7020–7033CrossRefGoogle Scholar
  82. 82.
    Hadidi N, Hosseini Shirazi SF, Kobarfard F, Nafissi-Varchehd N, Aboofazeli R (2012) Evaluation of the effect of PEGylated single-walled carbon nanotubes on viability and proliferation of jurkat cells. Iran J Pharm Res 11(1):27–37Google Scholar
  83. 83.
    Hauck TS, Ghazani AA, Chan WCW (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4(1):153–159CrossRefGoogle Scholar
  84. 84.
    Mahmoudi M, Simchi A, Vali H, Imani M, Shokrgozar MA, Azadmanesh K, Azari F (2009) Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts. Adv Eng Mater 11(12):B243–B250CrossRefGoogle Scholar
  85. 85.
    Babič M, Horák D, Jendelová P, Glogarová K, Herynek V, Trchová M, Likavčanová K, Lesný P, Pollert E, Hájek M, Syková E (2009) Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconj Chem 20(2):283–294CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan UniversityGuangzhouChina
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina
  3. 3.Lixia District People’s HospitalJinanChina

Personalised recommendations