Effects of Surface Coating on the Bioactivity of Metal-Based Engineered Nanoparticles: Lessons Learned from Higher Plants

  • Illya A. Medina-Velo
  • Ishaq Adisa
  • Carlos Tamez
  • Jose R. Peralta-Videa
  • Jorge L. Gardea-TorresdeyEmail author
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Characteristics such as size, surface-to-volume ratio, and surface chemistry, among others, convey uniqueness to engineering nanoparticles (ENPs). The surface chemistry determines the stability and aggregation of ENPs and also constrains their applications, environmental fate, and interaction with living organisms. To avoid aggregation and improve stabilization, the surface chemistry of numerous ENPs has been modified through coating with several agents. However, the coating also changes their biointeractions. In this chapter we discuss literature concerning the uptake, translocation, accumulation, and physiological effects of surface-coated ENPs in economically important plants. We discussed existing information based on the type of ENP, coating agent, and species of plant. Negative and positive effects are discussed.


Nanoparticles Surface chemistry Crop plants Uptake Stress 



This material is based upon work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI-1266377. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review and no official endorsement should be inferred. The authors also acknowledge the USDA grant 2016-67021-24985 and the NSF Grants EEC-1449500, CHE-0840525 and DBI-1429708. Partial funding was provided by the NSF ERC on Nanotechnology-Enabled Water Treatment (EEC-1449500). This work was also supported by Grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). J.L. Gardea-Torresdey acknowledges the Dudley family for the Endowed Research Professorship, the Academy of Applied Science/US Army Research Office, Research and Engineering Apprenticeship program (REAP) at UTEP, and the LEER and STARs programs of the UT System. I.A. Medina-Velo thanks the support of Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACyT).


  1. 1.
    Roco MC, Bainbridge WS (2013) The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society. J Nanopart Res 15(9):1–17CrossRefGoogle Scholar
  2. 2.
    Peralta-Videa JR, Huang Y, Parsons JG et al (2016) Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng 1:4CrossRefGoogle Scholar
  3. 3.
    Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12CrossRefGoogle Scholar
  4. 4.
    Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17CrossRefGoogle Scholar
  5. 5.
    Lu CM, Zhang CY, Wen JQ et al (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172Google Scholar
  6. 6.
    Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92CrossRefGoogle Scholar
  7. 7.
    Hong F, Yang F, Liu C et al (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260CrossRefGoogle Scholar
  8. 8.
    Gao F, Hong F, Liu C et al (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biol Trace Elem Res 111:239–253CrossRefGoogle Scholar
  9. 9.
    Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefGoogle Scholar
  10. 10.
    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefGoogle Scholar
  11. 11.
    Yang F, Liu C, Gao F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88CrossRefGoogle Scholar
  12. 12.
    Linglan M, Chao L, Chunxiang Q et al (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168–178CrossRefGoogle Scholar
  13. 13.
    Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498CrossRefGoogle Scholar
  14. 14.
    Tripathi DK, Gaur S, Singh S et al (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12CrossRefGoogle Scholar
  15. 15.
    de la Rosa G, García-Castañeda C, Vázquez-Núñez E et al (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235CrossRefGoogle Scholar
  16. 16.
    Zuverza-Mena N, Martínez-Fernández D, Du W et al (2016) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264CrossRefGoogle Scholar
  17. 17.
    Pachapur VL, Larios AD, Cledon M et al (2016) Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ 563–564:933–943CrossRefGoogle Scholar
  18. 18.
    Louie SM, Tilton RD, Lowry GV (2016) Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ Sci Nano 3:283–310CrossRefGoogle Scholar
  19. 19.
    Yin L, Cheng Y, Espinasse B et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367CrossRefGoogle Scholar
  20. 20.
    Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499CrossRefGoogle Scholar
  21. 21.
    Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332CrossRefGoogle Scholar
  22. 22.
    Koelmel J, Leland T, Wang H et al (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228CrossRefGoogle Scholar
  23. 23.
    Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474CrossRefGoogle Scholar
  24. 24.
    Rajeshwari A, Suresh S, Chandrasekaran N, Mukherjee A (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6:24000–24009CrossRefGoogle Scholar
  25. 25.
    Brewer SH, Glomm WR, Johnson MC et al (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307CrossRefGoogle Scholar
  26. 26.
    Suwanboon S, Amornpitoksuk P, Haidoux A, Tedenac JC (2008) Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J Alloys Compd 462:335–339CrossRefGoogle Scholar
  27. 27.
    Mukherjee A, Sun Y, Morelius E et al (2015) Differential toxicity of bare and hybrid ZnO nanoparticles in Green Pea (Pisum sativum L.): a life cycle study. Front Plant Sci 6:1242Google Scholar
  28. 28.
    George S, Pokhrel S, Xia T et al (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4:15–29CrossRefGoogle Scholar
  29. 29.
    Mukherjee A, Pokhrel S, Bandyopadhyay S et al (2014) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe at ZnO) in green peas (Pisum sativum L.). Chem Eng J 258:394–401CrossRefGoogle Scholar
  30. 30.
    Abdolmaleki A, Mallakpour S, Borandeh S (2012) Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide) containing tyrosine linkages. Polym Bull 69:15–28CrossRefGoogle Scholar
  31. 31.
    Mallakpour S, Madani M (2014) The effect of the coupling agents KH550 and KH570 on the nanostructure and interfacial interaction of zinc oxide/chiral poly(amide–imide) nanocomposites containing l-leucine amino acid moieties. J Mater Sci 49:5112–5118CrossRefGoogle Scholar
  32. 32.
    Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138CrossRefGoogle Scholar
  33. 33.
    Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523CrossRefGoogle Scholar
  34. 34.
    Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S et al (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater 263:677–684CrossRefGoogle Scholar
  35. 35.
    Barrios AC, Medina-Velo IA, Zuverza-Mena N et al (2016) Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. Plant Physiol Biochem 110:100–107Google Scholar
  36. 36.
    Barrios AC, Rico CM, Trujillo-Reyes J et al (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563–564:956–964CrossRefGoogle Scholar
  37. 37.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefGoogle Scholar
  38. 38.
    Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  39. 39.
    Asharani PV, Lian WuY, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102CrossRefGoogle Scholar
  40. 40.
    Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardorous threat to the environment and human health? J Appl Biomed 6:117–129Google Scholar
  41. 41.
    Phenrat T, Saleh N, Sirk K et al (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814CrossRefGoogle Scholar
  42. 42.
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96Google Scholar
  43. 43.
    Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924Google Scholar
  44. 44.
    Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135Google Scholar
  45. 45.
    Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478CrossRefGoogle Scholar
  46. 46.
    Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79CrossRefGoogle Scholar
  47. 47.
    Rafey A, Shrivastavaa KBL, Iqbal SA, Khan Z (2011) Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interface Sci 354:190–195CrossRefGoogle Scholar
  48. 48.
    Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422–2436CrossRefGoogle Scholar
  49. 49.
    Šišková K, Bečička O, Mašek V et al (2012) Spacer-free SERRS spectra of unperturbed porphyrin detected at 100 fM concentration in Ag hydrosols prepared by modified Tollens method. J Raman Spectrosc 43:689–691CrossRefGoogle Scholar
  50. 50.
    Upert G, Bouillère F, Wennemers H (2012) Oligoprolines as scaffolds for the formation of silver nanoparticles in defined sizes: correlating molecular and nanoscopic dimensions. Angew Chemie Int Ed 51:4231–4234CrossRefGoogle Scholar
  51. 51.
    Ashraf S, Abbasi AZ, Pfeiffer C et al (2013) Protein-mediated synthesis, pH-induced reversible agglomeration, toxicity and cellular interaction of silver nanoparticles. Colloids Surf B Biointerfaces 102:511–518CrossRefGoogle Scholar
  52. 52.
    Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189–190:1–20CrossRefGoogle Scholar
  53. 53.
    Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces 105:342–352CrossRefGoogle Scholar
  54. 54.
    Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076CrossRefGoogle Scholar
  55. 55.
    Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914CrossRefGoogle Scholar
  56. 56.
    Ringe E, Zhang J, Langille MR et al (2012) Correlating the structure and localized surface plasmon resonance of single silver right bipyramids. Nanotechnology 23:444005CrossRefGoogle Scholar
  57. 57.
    Liu G, Eichelsdoerfer DJ, Rasin B et al (2013) Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces. Proc Natl Acad Sci USA 110:887–891CrossRefGoogle Scholar
  58. 58.
    Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRefGoogle Scholar
  59. 59.
    Sal’nikov D, Pogorelova A, Makarov S (2009) Silver ion reduction with peat fulvic acids. Russ J Appl Chem 82:545–548CrossRefGoogle Scholar
  60. 60.
    Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefGoogle Scholar
  61. 61.
    Gigault J, Hackley VA (2013) Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry. Anal Chim Acta 763:57–66CrossRefGoogle Scholar
  62. 62.
    Delay M, Dolt T, Woellhaf A et al (2011) Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212CrossRefGoogle Scholar
  63. 63.
    Piccapietra F, Sigg L, Behra R (2012) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46:818–825CrossRefGoogle Scholar
  64. 64.
    Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 204:15–34CrossRefGoogle Scholar
  65. 65.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  66. 66.
    Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921CrossRefGoogle Scholar
  67. 67.
    Mandal TK, Fleming MS, Walt DR (2002) Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett 2:3–7CrossRefGoogle Scholar
  68. 68.
    Mine E, Yamada A, Kobayashi Y et al (2003) Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J Colloid Interface Sci 264:385–390CrossRefGoogle Scholar
  69. 69.
    Kim D, Park S, Jae HL et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665CrossRefGoogle Scholar
  70. 70.
    Alric C, Taleb J, Le DG et al (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915CrossRefGoogle Scholar
  71. 71.
    Zhang G, Yang Z, Lu W et al (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936CrossRefGoogle Scholar
  72. 72.
    Chew CKT, Salcianu C, Bishop P et al (2015) Functional thin film coatings incorporating gold nanoparticles in a transparent conducting fluorine doped tin oxide matrix. J Mater Chem C 3:1118–1125CrossRefGoogle Scholar
  73. 73.
    Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017CrossRefGoogle Scholar
  74. 74.
    Li L, Mak KY, Leung CW et al (2013) Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron Eng 110:329–334CrossRefGoogle Scholar
  75. 75.
    Mhamdi A, Queval G, Chaouch S et al (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220CrossRefGoogle Scholar
  76. 76.
    Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241CrossRefGoogle Scholar
  77. 77.
    Saison C, Perreault F, Daigle JC et al (2010) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114CrossRefGoogle Scholar
  78. 78.
    Perreault F, Oukarroum A, Melegari SP et al (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394CrossRefGoogle Scholar
  79. 79.
    Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Illya A. Medina-Velo
    • 1
    • 2
  • Ishaq Adisa
    • 3
  • Carlos Tamez
    • 2
    • 3
  • Jose R. Peralta-Videa
    • 1
    • 2
    • 3
  • Jorge L. Gardea-Torresdey
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of ChemistryThe University of Texas at El PasoEl PasoUSA
  2. 2.University of California Center for Environmental Implications of Nanotechnology (UC CEIN)The University of Texas at El PasoEl PasoUSA
  3. 3.Environmental Science and Engineering Ph.D. ProgramThe University of Texas at El PasoEl PasoUSA

Personalised recommendations