Advertisement

Terrestrial Nanotoxicology: Evaluating the Nano-Biointeractions in Vascular Plants

  • Swati Rawat
  • Suzanne A. Apodaca
  • Wenjuan Tan
  • Jose R. Peralta-Videa
  • Jorge L. Gardea-TorresdeyEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

The effects of engineered nanoparticles (ENPs) in living organisms are described in a myriad of articles. Most of the literature on this topic is devoted to plants of different gender and species. Studies from laboratories and greenhouse facilities highlight effects on chlorophyll production, plant growth, stress enzyme activities, phytotoxicity, cytotoxicity, and genotoxicity. With few exceptions, research reports show that toxic effects of ENPs on plants are associated with particle size, phase, surface properties, exposure concentration, and soil chemistry. ENPs have been found to be taken through roots from soilless/soil media and translocated to the aboveground organs. However, the uptake and translocation can occur in reverse if important amounts of ENPs are exposed to the foliage. This chapter includes an analysis of the most recent and relevant information about the interaction of ENPs with vascular plants. Most of the reviewed literature refers to highly produced and used ENPs. Data about exposure to carbon nanotubes (CNTs), cerium dioxide (nano-CeO2), titanium dioxide (nano-TiO2), zinc oxide (nano-ZnO), copper oxide (nano-CuO), gold (nano-Au), iron (nano-Fe3O4), silver (nano-Ag), and others ENPs are discussed.

Keywords

Engineered nanoparticles Toxicology Uptake Exposure pathways Risk assessment 

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI-1266377. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review and no official endorsement should be inferred. The authors also acknowledge the USDA Grant 2016-67021-24985 and the NSF Grants EEC-1449500, CHE-0840525 and DBI-1429708. Partial funding was provided by the NSF ERC on Nanotechnology-Enabled Water Treatment (EEC-1449500). This work was also supported by Grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). J.L. Gardea-Torresdey acknowledges the Dudley family for the Endowed Research Professorship, the Academy of Applied Science/US Army Research Office, Research and Engineering Apprenticeship Program (REAP) at UTEP, and the LEER and STARS programs of the UT System.

References

  1. 1.
    Daresta BE, Italiano F, de Gnerao G et al (2015) Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants. Chemosphere 119:37–42CrossRefGoogle Scholar
  2. 2.
    Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRefGoogle Scholar
  3. 3.
    Rai P (2016) Biomagnetic monitoring of particulate matter in the Indo-Burma hotspot region (Chapter 5). In: Biomagnetic monitoring of particulate pollution through plant leaves: an overview. Elsevier e-books, pp 75–109; Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)Google Scholar
  4. 4.
    Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12CrossRefGoogle Scholar
  5. 5.
    Yang Y et al (2014) Metal and nanoparticle occurrence in biosolid-amended soils. Sci Total Environ 485–486:441–449CrossRefGoogle Scholar
  6. 6.
    Hong J, Peralta-Videa JR, Rico C et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385CrossRefGoogle Scholar
  7. 7.
    Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423CrossRefGoogle Scholar
  8. 8.
    Lv J, Zhang S, Luo L et al (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77CrossRefGoogle Scholar
  9. 9.
    Zhao L, Peralta-Videa JR, Ren M et al (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  10. 10.
    Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48(5):2526–2540CrossRefGoogle Scholar
  11. 11.
    Ma C, White JC, Dhankher OP et al (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109–7122CrossRefGoogle Scholar
  12. 12.
    Naderi M, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232Google Scholar
  13. 13.
    Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456CrossRefGoogle Scholar
  14. 14.
    Gogos A, Knauer K, Buncheli TD et al (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792CrossRefGoogle Scholar
  15. 15.
    Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manage 30:504–520CrossRefGoogle Scholar
  16. 16.
    Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227CrossRefGoogle Scholar
  17. 17.
    Servin AD, Catillo-Michel H, Hernandez-Viezcas JA et al (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643CrossRefGoogle Scholar
  18. 18.
    Ghodake G, Seo YD, Lee DS et al (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955CrossRefGoogle Scholar
  19. 19.
    Zhu H, Han J, Xiao JQ et al (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717CrossRefGoogle Scholar
  20. 20.
    Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the up-take mechanism. J Hazard Mater 225:131–138CrossRefGoogle Scholar
  21. 21.
    Peng C, Duan D, Xu C et al (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107CrossRefGoogle Scholar
  22. 22.
    Majumdar S, Peralta-Videa JR, Bandyopadhyay S et al (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287CrossRefGoogle Scholar
  23. 23.
    López-Moreno ML, de la Rosa G, Hernandez-Viezcas JA et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320CrossRefGoogle Scholar
  24. 24.
    López-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693CrossRefGoogle Scholar
  25. 25.
    Zhang P, Ma Y, Zhang Z et al (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950CrossRefGoogle Scholar
  26. 26.
    Zhao L, Sun Y, Hernandez-Viezcas JA et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951CrossRefGoogle Scholar
  27. 27.
    Schwabe F, Tanner S, Schulin R et al (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2 nanoparticles by three crop plants. Metallomics 7:466–477CrossRefGoogle Scholar
  28. 28.
    Avanasi R, Jackson WA, Sherwin B et al (2014) C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48:2792–2797CrossRefGoogle Scholar
  29. 29.
    Dimkpa CO, Latta DE, McLean JE et al (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742CrossRefGoogle Scholar
  30. 30.
    Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 3:64–70CrossRefGoogle Scholar
  31. 31.
    Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663CrossRefGoogle Scholar
  32. 32.
    Zhang Z, Kleinstreuer C, Donohue JF et al (2005) Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:211–233CrossRefGoogle Scholar
  33. 33.
    Uzu G, Sobanska S, Sarret G et al (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042CrossRefGoogle Scholar
  34. 34.
    Schreck E, Foucault Y, Sarret G et al (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427:253–262CrossRefGoogle Scholar
  35. 35.
    Schreck E, Dappe V, Sarret G et al (2014) Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476:667–676CrossRefGoogle Scholar
  36. 36.
    Larue C, Castillo-Michel H, Sobanska S et al (2014) Foliar exposure of the crop (Lactuca sativa) to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106CrossRefGoogle Scholar
  37. 37.
    Larue C, Castillo-Michel H, Sobanska S et al (2014) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26CrossRefGoogle Scholar
  38. 38.
    Birbaum K, Brogioli R, Schellenberg M et al (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–8723CrossRefGoogle Scholar
  39. 39.
    Servin AD, Morales MI, Castillo-Michel H, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598CrossRefGoogle Scholar
  40. 40.
    Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62(40):9669–9675CrossRefGoogle Scholar
  41. 41.
    Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45(7):2777–2782CrossRefGoogle Scholar
  42. 42.
    Hong J, Rico CM, Zhao L et al (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185CrossRefGoogle Scholar
  43. 43.
    Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22(14):10551–10558CrossRefGoogle Scholar
  44. 44.
    Barrios AC, Rico CM, Trujillo-Reyes J et al (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563:956–964CrossRefGoogle Scholar
  45. 45.
    Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 13:822–828CrossRefGoogle Scholar
  46. 46.
    Zhao L, Sun Y, Hernandez-Viezcas JA et al (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921–2928CrossRefGoogle Scholar
  47. 47.
    Hong J, Wang L, Sun Y et al (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911CrossRefGoogle Scholar
  48. 48.
    Dietz K, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589CrossRefGoogle Scholar
  49. 49.
    Li H, Ye X, Guo X et al (2016) Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater 8/15 314:188–196CrossRefGoogle Scholar
  50. 50.
    Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365Google Scholar
  51. 51.
    Sharma SS, Dietz K (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50CrossRefGoogle Scholar
  52. 52.
    Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32(5):577–584CrossRefGoogle Scholar
  53. 53.
    Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11CrossRefGoogle Scholar
  54. 54.
    Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613CrossRefGoogle Scholar
  55. 55.
    Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886CrossRefGoogle Scholar
  56. 56.
    Oberdörster G, Stone V, Donaldson K et al (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRefGoogle Scholar
  57. 57.
    Wang Z, Xie X, Zhao J et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441CrossRefGoogle Scholar
  58. 58.
    Navarro E, Baun A, Behra R, Hartmann NB et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  59. 59.
    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  60. 60.
    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479CrossRefGoogle Scholar
  61. 61.
    Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499CrossRefGoogle Scholar
  62. 62.
    Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246CrossRefGoogle Scholar
  63. 63.
    Barrena R, Casals E, Colón J et al (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857CrossRefGoogle Scholar
  64. 64.
    Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517CrossRefGoogle Scholar
  65. 65.
    Doshi R, Braida W, Christodoulatos C et al (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106(3):296–303CrossRefGoogle Scholar
  66. 66.
    Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675CrossRefGoogle Scholar
  67. 67.
    Falco W, Botero E, Falcão E et al (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J Photochem Photobiol A 225(1):65–71CrossRefGoogle Scholar
  68. 68.
    Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148CrossRefGoogle Scholar
  69. 69.
    Alimohammadi M, Xu Y, Wang D et al (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 29:295101CrossRefGoogle Scholar
  70. 70.
    Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033CrossRefGoogle Scholar
  71. 71.
    Gomez-Garay A, Pintos B, Manzanera JA et al (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets. Biol Trace Elem Res 161(1):143–150CrossRefGoogle Scholar
  72. 72.
    Du W, Gardea-Torresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49(19):11884–11893CrossRefGoogle Scholar
  73. 73.
    Lee W, An Y, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921CrossRefGoogle Scholar
  74. 74.
    Zuverza-Mena N, Medina-Velo IA, Barrios AC et al (2015) Copper nanoparti cles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783–1793CrossRefGoogle Scholar
  75. 75.
    Trujillo-Reyes J, Majumdar S, Botez CE et al (2014) Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263CrossRefGoogle Scholar
  76. 76.
    Nair PMG, Chung IM (2014) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162(1–3):342–352CrossRefGoogle Scholar
  77. 77.
    Lalau CM, de Almeida Mohedano R, Schmidt ÉC et al (2015) Toxicological effects of cop per oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 252(1):221–229CrossRefGoogle Scholar
  78. 78.
    Shi J, Abid AD, Kennedy IM et al (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159(5):1277–1282CrossRefGoogle Scholar
  79. 79.
    Nair PMG, Kim S, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: Physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36(11):2947–2958CrossRefGoogle Scholar
  80. 80.
    Atha DH, Wang H, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827CrossRefGoogle Scholar
  81. 81.
    Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(9):1–11Google Scholar
  82. 82.
    Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14(9):1–15CrossRefGoogle Scholar
  83. 83.
    Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919CrossRefGoogle Scholar
  84. 84.
    Battke F, Leopold K, Maier M et al (2008) Palladium exposure of barley: uptake and effects. Plant Biol 10(2):272–276CrossRefGoogle Scholar
  85. 85.
    Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652Google Scholar
  86. 86.
    Gao J, Xu G, Qian H et al (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70CrossRefGoogle Scholar
  87. 87.
    Foltête A, Masfaraud J, Bigorgne E et al (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159(10):2515–2522CrossRefGoogle Scholar
  88. 88.
    Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585CrossRefGoogle Scholar
  89. 89.
    Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1):613–621CrossRefGoogle Scholar
  90. 90.
    Mukherjee A, Sun Y, Morelius E et al (2015) Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front Plant Sci 6:1242Google Scholar
  91. 91.
    Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138CrossRefGoogle Scholar
  92. 92.
    Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA et al (2016) Cerium biomagnification in a terrestrial food chain: influence of particle size and growth stage. Environ Sci Technol 50(13):6782–6792CrossRefGoogle Scholar
  93. 93.
    Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59CrossRefGoogle Scholar
  94. 94.
    Praetorius A, Arvidsson R, Molander S et al (2013) Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environ Sci Process Impacts 15(1):161–168CrossRefGoogle Scholar
  95. 95.
    Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Nanomaterials in agricultural production: benefits and possible threats? In: Shamin N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements. ACS symposium series, vol 1124, pp 73–90Google Scholar
  96. 96.
    Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48(6):3281–3292CrossRefGoogle Scholar
  97. 97.
    Cong Y, Banta GT, Selck H et al (2011) Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor. Aquat Toxicol 105(3–4):403–411CrossRefGoogle Scholar
  98. 98.
    Hildebrand H, Kühnel D, Potthoff A et al (2010) Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ Pollut 158(1):65–73CrossRefGoogle Scholar
  99. 99.
    Hendren CO, Lowry M, Grieger KD et al (2013) Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Environ Sci Technol 47(3):1190–1205CrossRefGoogle Scholar
  100. 100.
    Handy RD, van den Brink N, Chappell M et al (2012) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21(4):933–972CrossRefGoogle Scholar
  101. 101.
    Holden PA, Klaessig F, Turco RF et al (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48(18):10541–10551CrossRefGoogle Scholar
  102. 102.
    Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109(37):E2451–E2456CrossRefGoogle Scholar
  103. 103.
    Asante-Duah DK (ed) (2002) Public health risk assessment for human exposure to chemicals. Berlin, GermanyGoogle Scholar
  104. 104.
    Hund-Rinke K, Herrchen M, Schlich K (2014) Integrative test strategy for the environmental assessment of nanomaterials. Federal Environment Agency, Project No. (FKZ) 3712(65): 409Google Scholar
  105. 105.
    Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873CrossRefGoogle Scholar
  106. 106.
    Wang Q, Ma X, Zhang W et al (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4(10):1105–1112CrossRefGoogle Scholar
  107. 107.
    Majumdar S, Almeida IC, Arigi EA et al (2015) Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis. Environ Sci Technol 49(22):13283–13293CrossRefGoogle Scholar
  108. 108.
    Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterial in vascular plants. Environ Sci Technol 46(17):9224–9239CrossRefGoogle Scholar
  109. 109.
    De La Torre-Roche R, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547CrossRefGoogle Scholar
  110. 110.
    Handy RD, Von Der Kammer F, Lead JR et al (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287–314CrossRefGoogle Scholar
  111. 111.
    Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498CrossRefGoogle Scholar
  112. 112.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Swati Rawat
    • 1
  • Suzanne A. Apodaca
    • 1
  • Wenjuan Tan
    • 1
  • Jose R. Peralta-Videa
    • 1
  • Jorge L. Gardea-Torresdey
    • 1
    Email author
  1. 1.Environmental Science and EngineeringThe University of Texas at El PasoEl PasoUSA

Personalised recommendations