Skip to main content

Silicon Quantum Dots: From Synthesis to Bioapplications

  • Chapter
  • First Online:
Bioactivity of Engineered Nanoparticles

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Silicon quantum dots (Si QDs) represent a special class of nanomaterials with distinctive properties, being used in different applications such as photovoltaics, optoelectronics devices, and biomedical ones. They have excellent luminescence at UV irradiation, tunable band gap, and resistance against photobleaching compared to standard dyes. Being less toxic in comparison with conventional metal-containing QDs, they received growing research interest in the last decade as a more biocompatible alternative to which displayed toxicological concerns. There are several physical and chemical methods for Si QDs synthesis, each of them involving advantages and disadvantages. In physical methods, the experimental setup is very simple and parameters can be adjusted from outside in order to obtain the desired size of nanoparticles. Chemical methods seem to be attractive due to the huge scale of productions, but the purity control of the material and experimental setup are more complicated. For biomedical applications, many techniques have been established to achieve water-soluble Si QDs and for their conjugation with biomolecules that render them to specific biological targets. Si QDs have become powerful nanomaterials in various biomedical applications, a promising approach for in vivo imaging, tumor biology investigation, and cancer treatment. Besides of all these advantages, their characteristics can also trigger cytotoxicity in healthy cells by different mechanisms that have been in vitro and in vivo investigated in the last years. This chapter summarizes the major methods of synthesis and recent advances in bioconjugation strategies for preparing high-quality Si QDs, with a focus on their toxicity evaluation and bioapplications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng X, Lowe SB, Reece PJ, Gooding JJ (2014) Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev 43:2680–2700

    Article  Google Scholar 

  2. Fan JW, Vankayala R, Chang CL, Chang CH, Chiang CS, Hwang KC (2015) Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots. Nanotechnology 26:215703

    Article  Google Scholar 

  3. Alima D, Estrin Y, Rich DH, Bar I (2012) The structural and optical properties of supercontinuum emitting Si nanocrystals prepared by laser ablation in water. J Appl Phys 112:114312

    Article  Google Scholar 

  4. Ghosh B, Shirahata N (2014) Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater 15:014207

    Article  Google Scholar 

  5. Hwang J, Jeong Y, Lee KH, Seo Y, Kim J, Hong JW, Kmaloo E, Camesano TA, Choi J (2015) Simple preparation of fluorescent silicon nanoparticles from used Si wafers. Ind Eng Chem Res 54:5982–5989

    Article  Google Scholar 

  6. Chaturvedi A, Joshi MP, Rani E, Ingale A, Srivastava AK, Kukreja LM (2014) On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition. J Lumin 154:178–184

    Article  Google Scholar 

  7. Askari S, Macias-Montero M, Velusamy T, Maguire P, Svrcek V, Mariotti D (2015) Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. J Phys D Appl Phys 48:314002

    Article  Google Scholar 

  8. Gupta A, Wiggers H (2011) Freestanding silicon quantum dots: origin of red and blue luminescence. Nanotechnology 22:055707

    Article  Google Scholar 

  9. Shcherbyna L, Torchynska T (2013) Si quantum dot structures and their applications. Physica E 51:65–70

    Article  Google Scholar 

  10. Huan C, Shu-Qing S (2014) Silicon nanoparticles: preparation, properties, and applications. Chin Phys B 23:088102

    Article  Google Scholar 

  11. Chinnathambi S, Chen S, Ganesan S, Hanagata N (2014) Silicon quantum dots for biological applications. Adv Healthc Mater 3:10–29

    Article  Google Scholar 

  12. Huang WQ, Miao XJ, Huang ZM, Liu SR, Qin CJ (2012) Activation of silicon quantum dots for emission. Chin Phys B 21:094207

    Article  Google Scholar 

  13. Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19:415102

    Article  Google Scholar 

  14. Zhou T, Anderson RT, Li H, Bell J, Yang Y, Gorman BP, Pylypenko S, Lusk MT, Sellinger A (2015) Bandgap tuning of silicon quantum dots by surface functionalization with conjugated organic groups. Nano Lett 15:3657–3663

    Article  Google Scholar 

  15. Chatterjee S, Mukherjee TK (2013) Size-dependent differential interaction of allylamine-capped silicon quantum dots with surfactant assemblies studied using photoluminescence spectroscopy and imaging technique. J Phys Chem C 117:10799–10808

    Article  Google Scholar 

  16. Joo J, Liu X, Kotamraju VR, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9:6233–6241

    Article  Google Scholar 

  17. Lee KH (2007) Quantum dots for molecular imaging. J Nucl Med 48:1408–1410

    Article  Google Scholar 

  18. Cheng X, Hinde E, Owen DM, Lowe SB, Reece PJ, Gaus K, Gooding JJ (2015) Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: application to silicon quantum dots (SiQDs). Adv Mater 27:6144–6150

    Article  Google Scholar 

  19. Wang Y, Wang H, Guo J, Wu J, Gao LJ, Sun YH, Zhao J, Zou GF (2015) Water-soluble silicon quantum dots with quasi-blue emission. Nanoscale Res Lett 10:300

    Article  Google Scholar 

  20. Cheng X, Lowe SB, Ciampi S, Magenau A, Gaus K, Reece PJ, Gooding JJ (2014) Versatile “Click Chemistry” approach to functionalizing silicon quantum dots: applications toward fluorescent cellular imaging. Langmuir 30:5209–5216

    Article  Google Scholar 

  21. Chen X, Yang P (2015) Preparation and photovoltaic properties of silicon quantum dots embedded in a dielectric matrix: a review. J Mater Sci Mater Electron 26:4604–4617

    Article  Google Scholar 

  22. Barbadikar D, Gautam R, Sahare S, Patrikar R, Bhatt J (2013) Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition. Bull Mater Sci 36:483–490

    Article  Google Scholar 

  23. DeBenedetti WJI, Chiu SK, Radlinger CM, Ellison RJ, Manhat BA, Zhang JZ, Shi J, Goforth AM (2015) Conversion from red to blue photoluminescence in alcohol dispersions of alkyl-capped silicon nanoparticles: insight into the origins of visible photoluminescence in colloidal nanocrystalline silicon. J Phys Chem C 119:9595–9608

    Article  Google Scholar 

  24. Huisken F, Ledoux G, Guillois O, Reynaud C (2002) Light-emitting silicon nanocrystals from laser pyrolysis. Adv Mater 14:1861–1865

    Article  Google Scholar 

  25. Ledoux G, Guillois O, Porterat D, Reynaud C (2000) Photoluminescence properties of silicon nanocrystals as a function of their size. Phys Rev B 62:15942–15951

    Article  Google Scholar 

  26. Eroshova OI, Perminov PA, Zabotnov SV, Gongal’skii MB, Ezhov AA, Golovan LA, Kashkarov PK (2012) Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media. Crystallogr Rep 57:831–835

    Article  Google Scholar 

  27. Xin Y, Nishio K, Saitow K (2015) White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode. Appl Phys Lett 106:201102

    Article  Google Scholar 

  28. Kim BH, Cho CH, Kim TW, Park NM, Sung GY, Park SJ (2005) Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4. Appl Phys Lett 86:091908

    Article  Google Scholar 

  29. Wu Q, Wang X, Li QS, Zhang RQ (2013) Excited state relaxation and stabilization of hydrogen terminated silicon quantum dots. J Clust Sci 24:381–397

    Article  Google Scholar 

  30. Park NM, Kim SH, Sung GY, Park SJ (2002) Growth and size control of amorphous silicon quantum dots using SiH4/N2 plasma. Chem Vap Depos 8:254–256

    Article  Google Scholar 

  31. Someno K, Usami K, Kodera T, Kawano Y, Hatano M, Oda S (2012) Photoluminescence of nanocrystalline silicon quantum dots with various sizes and various phosphorus doping concentrations prepared by very high frequency plasma. Jpn J Appl Phys 51:115202

    Article  Google Scholar 

  32. Barnard AS, Wilson HF (2015) Optical emission of statistical distributions of silicon quantum dots. J Phys Chem C 119:7969–7977

    Article  Google Scholar 

  33. Le TH, Jeong HD (2014) Characterization of band gaps of silicon quantum dots synthesized by etching silicon nanopowder with aqueous hydrofluoric acid and nitric acid. Bull Korean Chem Soc 35:1523–1528

    Article  Google Scholar 

  34. Vincent J, Maurice V, Paquez X, Sublemontier O, Leconte Y, Guillois O, Reynaud C, Herlin-Boime N, Raccurt O, Tardif F (2010) Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J Nanopart Res 12:39–46

    Article  Google Scholar 

  35. Ledoux G, Gong J, Huisken F (2001) Effect of passivation and aging on the photoluminescence of silicon nanocrystals. Appl Phys Lett 79:4028–4030

    Article  Google Scholar 

  36. Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T (2008) Optimal surface functionalization of silicon quantum dots. J Chem Phys 128:244714

    Article  Google Scholar 

  37. Dasog M, Bader K, Veinot JGC (2015) Influence of halides on the optical properties of silicon quantum dots. Chem Mater 27:1153–1156

    Article  Google Scholar 

  38. Amans D, Guillois O, Ledoux G, Porterat D, Reynaud C (2002) Influence of light intensity on the photoluminescence of silicon nanostructures. J Appl Phys 91:5334–5340

    Article  Google Scholar 

  39. Kim BH, Davis RF, Park SJ (2010) Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing. Thin Solid Films S18:1744–1746

    Article  Google Scholar 

  40. Zianni X, Nassiopoulou AG (2006) Photoluminescence lifetimes of Si quantum dots. J Appl Phys 100:074312

    Article  Google Scholar 

  41. Wu CL, Lin GR (2012) Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. AIP Adv 2:042162

    Article  Google Scholar 

  42. Okada R, Iijima S (1991) Oxidation property of silicon small particles. Appl Phys Lett 58:1662–1663

    Article  Google Scholar 

  43. Intartaglia R, Bagga K, Scotto M, Diaspro A, Brandi F (2012) Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt Mater Express 2:510–518

    Article  Google Scholar 

  44. Vaccaro L, Sciortino L, Messina F, Buscarino G, Agnello S, Cannas M (2014) Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water. Appl Surf Sci 302:62–65

    Article  Google Scholar 

  45. Chewchinda P, Odawara O, Wada H (2014) The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Appl Phys A 117:131–135

    Article  Google Scholar 

  46. Orii T, Hirasawa M, Seto T, Aya N, Onari S (2003) Temperature dependence of photoluminescence from mono-dispersed Si nanoparticles. Eur Phys J D 24:119–122

    Article  Google Scholar 

  47. Grigoriu C, Nicolae I, Ciupina V, Prodan G, Suematsu H, Yatsui K (2004) Influence of the experimental parameters on silicon nanoparticles produced by laser ablation. J Optoelectron Adv Mater 6:825–830

    Google Scholar 

  48. Grigoriu C, Kuroki Y, Nicolae I, Zhu X, Hirai M, Suematsu H, Takata M, Yatsui K (2005) Photo and cathodoluminescence of Si/SiO2 nanoparticles produced by laser ablation. J Optoelectron Adv Mater 7:2979–2984

    Google Scholar 

  49. Riabinina D, Durand C, Chaker M, Rosei F (2006) Photoluminescent silicon nanocrystals synthesized by reactive laser ablation. Appl Phys Lett 88:073105

    Article  Google Scholar 

  50. Wu MH, Mu R, Ueda A, Henderson DO, Vlahovic B (2005) Production of silicon quantum dots for photovoltaic applications by picosecond pulsed laser ablation. Mater Sci Eng B 116:273–277

    Article  Google Scholar 

  51. Mahdieh MH, Momeni A (2015) From single pulse to double pulse ns laser ablation of silicon in water: photoluminescence enhancement of silicon nanocrystals. Laser Phys 25:015901

    Article  Google Scholar 

  52. Nakamura T, Yuan Z, Adachi S (2014) High-yield preparation of blue emitting colloidal Si nanocrystals by selective laser ablation of porous silicon in liquid. Nanotechnology 25:275602

    Article  Google Scholar 

  53. Kelly PJ, Arnell RD (2000) Magnetron sputtering; a review of recent developments and applications. Vacuum 56:159–172

    Article  Google Scholar 

  54. Tang W, Eilers JJ, van Huis MA, Wang D, Schropp REI, Di Vece M (2015) Formation and photoluminescence of “cauliflower” silicon nanoparticles. J Phys Chem C 119:11042–11047

    Article  Google Scholar 

  55. Ohta S, Shen P, Inasawa S, Yamaguchi Y (2012) Size- and surface chemistry-dependent intracellular localization of luminescent silicon quantum dot aggregates. J Mater Chem 22:10631–10638

    Article  Google Scholar 

  56. Heath JR (1992) A liquid solution phase synthesis of crystalline silicon. Science 258:1131

    Article  Google Scholar 

  57. Belomoin G, Therrien J, Smith A, Rao S, Twesten R (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843

    Article  Google Scholar 

  58. Sato K, Tsuji H, Hirakuri K, Fukata N, Yamauki Y (2009) Controlled chemical etching for silicon nanocrystals with wavelength-tunable photoluminescence. Chem Commun 25:3759–3761

    Article  Google Scholar 

  59. Baretto GP, Morales G, Lopez Qintanilla ML (2013) Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time and additives on nano-ZnO morphology development. J Mater 2013. Article ID 478681

    Google Scholar 

  60. Atkins TM, Louie AY, Kanzlarich SM (2012) An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles. Nanotechnology 23:294006

    Article  Google Scholar 

  61. He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee ST (2011) One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133:14192–14195

    Article  Google Scholar 

  62. Yu W, Xu Y, Li H, Zhan X, Lu W (2013) Synthesis of full-visible-spectrum luminescent silicon nanocrystals and the origin of the luminescence. Appl Phys A 111:501–507

    Article  Google Scholar 

  63. Erogbogbo F, Yong KT, Roy I, Xu GX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878

    Article  Google Scholar 

  64. Shen P, Ohta S, Inasawa S, Yamaguchi Y (2011) Selective labeling of the endoplasmic reticulum in live cells with silicon quantum dots. Chem Commun (Camb) 47:8409–8411

    Article  Google Scholar 

  65. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee ST, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135:8350–8356

    Article  Google Scholar 

  66. Wu J, Dai J, Shao Y, Sun Y (2015) One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging. RSC Adv 5:83581–83587

    Article  Google Scholar 

  67. Erogbogbo F, Chang CW, May J, Prasad PN, Swihart MT (2012) Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. Nanoscale 4:5163–5168

    Article  Google Scholar 

  68. Tu CQ, Ma XC, Pantazis P, Kauzlarich SM, Louie AY (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132:2016–2023

    Article  Google Scholar 

  69. Stan MS, Sima C, Cinteza LO, Dinischiotu A (2015) Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. FEBS J 282:2914–2929

    Article  Google Scholar 

  70. Stan MS, Memet I, Sima C, Popescu T, Teodorescu VS, Hermenean A, Dinischiotu A (2014) Si/SiO2 quantum dots cause cytotoxicity in lung cells through redox homeostasis imbalance. Chem Biol Interact 220:102–115

    Article  Google Scholar 

  71. Stanca L, Sima C, Petrache Voicu SN, Serban AI, Dinischiotu A (2015) In vitro evaluation of the morphological and biochemical changes induced by Si/SiO2 QDs exposure of HepG2 cells. Rom Rep Phys 67:1512–1524

    Google Scholar 

  72. De Stefano D, Carnuccio R, Maiuri MC (2012) Nanomaterials toxicity and cell death modalities. J Drug Deliv. Article ID 167896

    Google Scholar 

  73. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132:248–253

    Article  Google Scholar 

  74. Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106:140–152

    Article  Google Scholar 

  75. Luo YH, Wu SB, Wei YH, Chen YC, Tsai MH, Hp CC, Lin SY, Yang CS, Lin P (2013) Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol 26:662–673

    Article  Google Scholar 

  76. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20

    Article  Google Scholar 

  77. Tu C, Ma X, House A, Kauzlarich SM, Louie AY (2011) PET imaging and biodistribution od silicon quantum dots in mice. ACS Med Chem Lett 2:285–288

    Article  Google Scholar 

  78. Liu J, Erogbogbo F, Yong KT, Ye L, Liu J, Hu R, Chen H, Hu Y, Yang Y, Yang J, Roy I, Karker NA, Swihart MT, Prasad PN (2013) Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7:7303–7310

    Article  Google Scholar 

  79. Erogbogbo F, Yong KT, Roy I, Hu R, Law WC, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423

    Article  Google Scholar 

  80. Stanca L, Petrache SN, Serban AI, Staicu AC, Sima C, Munteanu MC, Zărnescu O, Dinu D, Dinischiotu A (2013) Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. Nanoscale Res Lett 8:254

    Article  Google Scholar 

  81. Serban AI, Stanca L, Sima C, Staicu AC, Zarnescu O, Dinischiotu A (2015) Complex responses to Si quantum dots accumulation in carp liver tissue: beyond oxidative stress. Chem Biol Interact 239:56–66

    Article  Google Scholar 

  82. Petrache SN, Stanca L, Serban AI, Sima C, Staicu AC, Munteanu MC, Costache M, Burlacu R, Zarnescu O, Dinischiotu A (2012) Structural and oxidative changes in the kidney of crucian carp induced by silicon-based quantum dots. Int J Mol Sci 13:10193–101211

    Article  Google Scholar 

  83. Stanca L, Petrache SN, Radu M, Serban AI, Munteanu MC, Teodorescu D, Staicu AC, Sima C, Costache M, Grigoriu C, Zarnescu O, Dinischiotu A (2012) Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio. Fish Physiol Biochem 38:963–975

    Article  Google Scholar 

  84. Alsharif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR, Datta HK (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5:221–228

    Article  Google Scholar 

  85. Ohta S, Yamura K, Inasawa S, Yamaguchi Y (2015) Aggregates of silicon quantum dots as a drug carrier: selective intracellular drug release based on pH-responsive aggregation/dispersion. Chem Commun 51:6422–6425

    Article  Google Scholar 

  86. Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467

    Article  Google Scholar 

  87. Erogbogbo F, Yong KT, Hu R, Law WC, Ding H, Chang CW, Prasad PN, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4:5131–5138

    Article  Google Scholar 

  88. Erogbogbo F, Chang CW, May JL, Liu L, Kumar R, Law WC, Ding H, Yong KT, Roy I, Sheshadri M, Swihart MT, Prasad PN (2012) Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4:5483–5489

    Article  Google Scholar 

  89. Klein S, Zolk O, Fromm MF, Schrodl F, Neuhuber W, Kryschi C (2009) Functionalized silicon quantum dots tailored for targeted siRNA delivery. Bioch Biophys Res Commun 387:164–168

    Article  Google Scholar 

  90. May JL, Erogbogbo F, Yong KT, Ding H, Law WC, Swihart MT, Prasad PN (2012) Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic® encapsulation and antibody targeting. J Solid Tumors 2:24–37

    Article  Google Scholar 

  91. Erogbogbo F, Liu X, May JL, Narain A, Gladding P, Swihart MT, Prasad PN (2013) Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells. Integr Biol 5:144–150

    Article  Google Scholar 

  92. Hanada S, Fujioka K, Futamura Y, Manabe N, Hoshino A, Yamamoto K (2013) Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: their cytotoxicity and biological effect. Int J Mol Sci 14:1323–1334

    Article  Google Scholar 

  93. Paul A, Jana A, Karthik S, Bera M, Zhao Y, Singh NDP (2016) Photoresponsive real time monitoring silicon quantum dots for regulated delivery of anticancer drugs. J Mater Chem B 4:521–528

    Article  Google Scholar 

  94. Erogbogbo F, May J, Swihart M, Prasad PN, Smart K, Jack SE, Korcyk D, Webster M, Stewart R, Zeng I, Jullig M, Bakeev K, Jamieson M, Kasabov N, Gopalan B, Liang L, Hu R, Schliebs S, Villas-Boas S, Gladding P (2013) Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia. Theranostics 3:719–728

    Article  Google Scholar 

  95. Olson JL, Velez-Montoya R, Mandava N, Stoldt CR (2012) Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degeneration. Invest Ophthalmol Vis Sci 53:5713–5721

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Dinischiotu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Stan, M.S., Sima, C., Dinischiotu, A. (2017). Silicon Quantum Dots: From Synthesis to Bioapplications. In: Yan, B., Zhou, H., Gardea-Torresdey, J. (eds) Bioactivity of Engineered Nanoparticles. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5864-6_13

Download citation

Publish with us

Policies and ethics