Silicon Quantum Dots: From Synthesis to Bioapplications

  • Miruna Silvia Stan
  • Cornelia Sima
  • Anca DinischiotuEmail author
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Silicon quantum dots (Si QDs) represent a special class of nanomaterials with distinctive properties, being used in different applications such as photovoltaics, optoelectronics devices, and biomedical ones. They have excellent luminescence at UV irradiation, tunable band gap, and resistance against photobleaching compared to standard dyes. Being less toxic in comparison with conventional metal-containing QDs, they received growing research interest in the last decade as a more biocompatible alternative to which displayed toxicological concerns. There are several physical and chemical methods for Si QDs synthesis, each of them involving advantages and disadvantages. In physical methods, the experimental setup is very simple and parameters can be adjusted from outside in order to obtain the desired size of nanoparticles. Chemical methods seem to be attractive due to the huge scale of productions, but the purity control of the material and experimental setup are more complicated. For biomedical applications, many techniques have been established to achieve water-soluble Si QDs and for their conjugation with biomolecules that render them to specific biological targets. Si QDs have become powerful nanomaterials in various biomedical applications, a promising approach for in vivo imaging, tumor biology investigation, and cancer treatment. Besides of all these advantages, their characteristics can also trigger cytotoxicity in healthy cells by different mechanisms that have been in vitro and in vivo investigated in the last years. This chapter summarizes the major methods of synthesis and recent advances in bioconjugation strategies for preparing high-quality Si QDs, with a focus on their toxicity evaluation and bioapplications.


Silicon quantum dots Semiconductors Self-fluorescence Biocompatibility Biomedical applications 


  1. 1.
    Cheng X, Lowe SB, Reece PJ, Gooding JJ (2014) Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev 43:2680–2700CrossRefGoogle Scholar
  2. 2.
    Fan JW, Vankayala R, Chang CL, Chang CH, Chiang CS, Hwang KC (2015) Preparation, cytotoxicity and in vivo bioimaging of highly luminescent water-soluble silicon quantum dots. Nanotechnology 26:215703CrossRefGoogle Scholar
  3. 3.
    Alima D, Estrin Y, Rich DH, Bar I (2012) The structural and optical properties of supercontinuum emitting Si nanocrystals prepared by laser ablation in water. J Appl Phys 112:114312CrossRefGoogle Scholar
  4. 4.
    Ghosh B, Shirahata N (2014) Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater 15:014207CrossRefGoogle Scholar
  5. 5.
    Hwang J, Jeong Y, Lee KH, Seo Y, Kim J, Hong JW, Kmaloo E, Camesano TA, Choi J (2015) Simple preparation of fluorescent silicon nanoparticles from used Si wafers. Ind Eng Chem Res 54:5982–5989CrossRefGoogle Scholar
  6. 6.
    Chaturvedi A, Joshi MP, Rani E, Ingale A, Srivastava AK, Kukreja LM (2014) On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition. J Lumin 154:178–184CrossRefGoogle Scholar
  7. 7.
    Askari S, Macias-Montero M, Velusamy T, Maguire P, Svrcek V, Mariotti D (2015) Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. J Phys D Appl Phys 48:314002CrossRefGoogle Scholar
  8. 8.
    Gupta A, Wiggers H (2011) Freestanding silicon quantum dots: origin of red and blue luminescence. Nanotechnology 22:055707CrossRefGoogle Scholar
  9. 9.
    Shcherbyna L, Torchynska T (2013) Si quantum dot structures and their applications. Physica E 51:65–70CrossRefGoogle Scholar
  10. 10.
    Huan C, Shu-Qing S (2014) Silicon nanoparticles: preparation, properties, and applications. Chin Phys B 23:088102CrossRefGoogle Scholar
  11. 11.
    Chinnathambi S, Chen S, Ganesan S, Hanagata N (2014) Silicon quantum dots for biological applications. Adv Healthc Mater 3:10–29CrossRefGoogle Scholar
  12. 12.
    Huang WQ, Miao XJ, Huang ZM, Liu SR, Qin CJ (2012) Activation of silicon quantum dots for emission. Chin Phys B 21:094207CrossRefGoogle Scholar
  13. 13.
    Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19:415102CrossRefGoogle Scholar
  14. 14.
    Zhou T, Anderson RT, Li H, Bell J, Yang Y, Gorman BP, Pylypenko S, Lusk MT, Sellinger A (2015) Bandgap tuning of silicon quantum dots by surface functionalization with conjugated organic groups. Nano Lett 15:3657–3663CrossRefGoogle Scholar
  15. 15.
    Chatterjee S, Mukherjee TK (2013) Size-dependent differential interaction of allylamine-capped silicon quantum dots with surfactant assemblies studied using photoluminescence spectroscopy and imaging technique. J Phys Chem C 117:10799–10808CrossRefGoogle Scholar
  16. 16.
    Joo J, Liu X, Kotamraju VR, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9:6233–6241CrossRefGoogle Scholar
  17. 17.
    Lee KH (2007) Quantum dots for molecular imaging. J Nucl Med 48:1408–1410CrossRefGoogle Scholar
  18. 18.
    Cheng X, Hinde E, Owen DM, Lowe SB, Reece PJ, Gaus K, Gooding JJ (2015) Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: application to silicon quantum dots (SiQDs). Adv Mater 27:6144–6150CrossRefGoogle Scholar
  19. 19.
    Wang Y, Wang H, Guo J, Wu J, Gao LJ, Sun YH, Zhao J, Zou GF (2015) Water-soluble silicon quantum dots with quasi-blue emission. Nanoscale Res Lett 10:300CrossRefGoogle Scholar
  20. 20.
    Cheng X, Lowe SB, Ciampi S, Magenau A, Gaus K, Reece PJ, Gooding JJ (2014) Versatile “Click Chemistry” approach to functionalizing silicon quantum dots: applications toward fluorescent cellular imaging. Langmuir 30:5209–5216CrossRefGoogle Scholar
  21. 21.
    Chen X, Yang P (2015) Preparation and photovoltaic properties of silicon quantum dots embedded in a dielectric matrix: a review. J Mater Sci Mater Electron 26:4604–4617CrossRefGoogle Scholar
  22. 22.
    Barbadikar D, Gautam R, Sahare S, Patrikar R, Bhatt J (2013) Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition. Bull Mater Sci 36:483–490CrossRefGoogle Scholar
  23. 23.
    DeBenedetti WJI, Chiu SK, Radlinger CM, Ellison RJ, Manhat BA, Zhang JZ, Shi J, Goforth AM (2015) Conversion from red to blue photoluminescence in alcohol dispersions of alkyl-capped silicon nanoparticles: insight into the origins of visible photoluminescence in colloidal nanocrystalline silicon. J Phys Chem C 119:9595–9608CrossRefGoogle Scholar
  24. 24.
    Huisken F, Ledoux G, Guillois O, Reynaud C (2002) Light-emitting silicon nanocrystals from laser pyrolysis. Adv Mater 14:1861–1865CrossRefGoogle Scholar
  25. 25.
    Ledoux G, Guillois O, Porterat D, Reynaud C (2000) Photoluminescence properties of silicon nanocrystals as a function of their size. Phys Rev B 62:15942–15951CrossRefGoogle Scholar
  26. 26.
    Eroshova OI, Perminov PA, Zabotnov SV, Gongal’skii MB, Ezhov AA, Golovan LA, Kashkarov PK (2012) Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media. Crystallogr Rep 57:831–835CrossRefGoogle Scholar
  27. 27.
    Xin Y, Nishio K, Saitow K (2015) White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode. Appl Phys Lett 106:201102CrossRefGoogle Scholar
  28. 28.
    Kim BH, Cho CH, Kim TW, Park NM, Sung GY, Park SJ (2005) Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4. Appl Phys Lett 86:091908CrossRefGoogle Scholar
  29. 29.
    Wu Q, Wang X, Li QS, Zhang RQ (2013) Excited state relaxation and stabilization of hydrogen terminated silicon quantum dots. J Clust Sci 24:381–397CrossRefGoogle Scholar
  30. 30.
    Park NM, Kim SH, Sung GY, Park SJ (2002) Growth and size control of amorphous silicon quantum dots using SiH4/N2 plasma. Chem Vap Depos 8:254–256CrossRefGoogle Scholar
  31. 31.
    Someno K, Usami K, Kodera T, Kawano Y, Hatano M, Oda S (2012) Photoluminescence of nanocrystalline silicon quantum dots with various sizes and various phosphorus doping concentrations prepared by very high frequency plasma. Jpn J Appl Phys 51:115202CrossRefGoogle Scholar
  32. 32.
    Barnard AS, Wilson HF (2015) Optical emission of statistical distributions of silicon quantum dots. J Phys Chem C 119:7969–7977CrossRefGoogle Scholar
  33. 33.
    Le TH, Jeong HD (2014) Characterization of band gaps of silicon quantum dots synthesized by etching silicon nanopowder with aqueous hydrofluoric acid and nitric acid. Bull Korean Chem Soc 35:1523–1528CrossRefGoogle Scholar
  34. 34.
    Vincent J, Maurice V, Paquez X, Sublemontier O, Leconte Y, Guillois O, Reynaud C, Herlin-Boime N, Raccurt O, Tardif F (2010) Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J Nanopart Res 12:39–46CrossRefGoogle Scholar
  35. 35.
    Ledoux G, Gong J, Huisken F (2001) Effect of passivation and aging on the photoluminescence of silicon nanocrystals. Appl Phys Lett 79:4028–4030CrossRefGoogle Scholar
  36. 36.
    Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T (2008) Optimal surface functionalization of silicon quantum dots. J Chem Phys 128:244714CrossRefGoogle Scholar
  37. 37.
    Dasog M, Bader K, Veinot JGC (2015) Influence of halides on the optical properties of silicon quantum dots. Chem Mater 27:1153–1156CrossRefGoogle Scholar
  38. 38.
    Amans D, Guillois O, Ledoux G, Porterat D, Reynaud C (2002) Influence of light intensity on the photoluminescence of silicon nanostructures. J Appl Phys 91:5334–5340CrossRefGoogle Scholar
  39. 39.
    Kim BH, Davis RF, Park SJ (2010) Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing. Thin Solid Films S18:1744–1746CrossRefGoogle Scholar
  40. 40.
    Zianni X, Nassiopoulou AG (2006) Photoluminescence lifetimes of Si quantum dots. J Appl Phys 100:074312CrossRefGoogle Scholar
  41. 41.
    Wu CL, Lin GR (2012) Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot. AIP Adv 2:042162CrossRefGoogle Scholar
  42. 42.
    Okada R, Iijima S (1991) Oxidation property of silicon small particles. Appl Phys Lett 58:1662–1663CrossRefGoogle Scholar
  43. 43.
    Intartaglia R, Bagga K, Scotto M, Diaspro A, Brandi F (2012) Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt Mater Express 2:510–518CrossRefGoogle Scholar
  44. 44.
    Vaccaro L, Sciortino L, Messina F, Buscarino G, Agnello S, Cannas M (2014) Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water. Appl Surf Sci 302:62–65CrossRefGoogle Scholar
  45. 45.
    Chewchinda P, Odawara O, Wada H (2014) The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Appl Phys A 117:131–135CrossRefGoogle Scholar
  46. 46.
    Orii T, Hirasawa M, Seto T, Aya N, Onari S (2003) Temperature dependence of photoluminescence from mono-dispersed Si nanoparticles. Eur Phys J D 24:119–122CrossRefGoogle Scholar
  47. 47.
    Grigoriu C, Nicolae I, Ciupina V, Prodan G, Suematsu H, Yatsui K (2004) Influence of the experimental parameters on silicon nanoparticles produced by laser ablation. J Optoelectron Adv Mater 6:825–830Google Scholar
  48. 48.
    Grigoriu C, Kuroki Y, Nicolae I, Zhu X, Hirai M, Suematsu H, Takata M, Yatsui K (2005) Photo and cathodoluminescence of Si/SiO2 nanoparticles produced by laser ablation. J Optoelectron Adv Mater 7:2979–2984Google Scholar
  49. 49.
    Riabinina D, Durand C, Chaker M, Rosei F (2006) Photoluminescent silicon nanocrystals synthesized by reactive laser ablation. Appl Phys Lett 88:073105CrossRefGoogle Scholar
  50. 50.
    Wu MH, Mu R, Ueda A, Henderson DO, Vlahovic B (2005) Production of silicon quantum dots for photovoltaic applications by picosecond pulsed laser ablation. Mater Sci Eng B 116:273–277CrossRefGoogle Scholar
  51. 51.
    Mahdieh MH, Momeni A (2015) From single pulse to double pulse ns laser ablation of silicon in water: photoluminescence enhancement of silicon nanocrystals. Laser Phys 25:015901CrossRefGoogle Scholar
  52. 52.
    Nakamura T, Yuan Z, Adachi S (2014) High-yield preparation of blue emitting colloidal Si nanocrystals by selective laser ablation of porous silicon in liquid. Nanotechnology 25:275602CrossRefGoogle Scholar
  53. 53.
    Kelly PJ, Arnell RD (2000) Magnetron sputtering; a review of recent developments and applications. Vacuum 56:159–172CrossRefGoogle Scholar
  54. 54.
    Tang W, Eilers JJ, van Huis MA, Wang D, Schropp REI, Di Vece M (2015) Formation and photoluminescence of “cauliflower” silicon nanoparticles. J Phys Chem C 119:11042–11047CrossRefGoogle Scholar
  55. 55.
    Ohta S, Shen P, Inasawa S, Yamaguchi Y (2012) Size- and surface chemistry-dependent intracellular localization of luminescent silicon quantum dot aggregates. J Mater Chem 22:10631–10638CrossRefGoogle Scholar
  56. 56.
    Heath JR (1992) A liquid solution phase synthesis of crystalline silicon. Science 258:1131CrossRefGoogle Scholar
  57. 57.
    Belomoin G, Therrien J, Smith A, Rao S, Twesten R (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843CrossRefGoogle Scholar
  58. 58.
    Sato K, Tsuji H, Hirakuri K, Fukata N, Yamauki Y (2009) Controlled chemical etching for silicon nanocrystals with wavelength-tunable photoluminescence. Chem Commun 25:3759–3761CrossRefGoogle Scholar
  59. 59.
    Baretto GP, Morales G, Lopez Qintanilla ML (2013) Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time and additives on nano-ZnO morphology development. J Mater 2013. Article ID 478681Google Scholar
  60. 60.
    Atkins TM, Louie AY, Kanzlarich SM (2012) An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles. Nanotechnology 23:294006CrossRefGoogle Scholar
  61. 61.
    He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee ST (2011) One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133:14192–14195CrossRefGoogle Scholar
  62. 62.
    Yu W, Xu Y, Li H, Zhan X, Lu W (2013) Synthesis of full-visible-spectrum luminescent silicon nanocrystals and the origin of the luminescence. Appl Phys A 111:501–507CrossRefGoogle Scholar
  63. 63.
    Erogbogbo F, Yong KT, Roy I, Xu GX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878CrossRefGoogle Scholar
  64. 64.
    Shen P, Ohta S, Inasawa S, Yamaguchi Y (2011) Selective labeling of the endoplasmic reticulum in live cells with silicon quantum dots. Chem Commun (Camb) 47:8409–8411CrossRefGoogle Scholar
  65. 65.
    Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee ST, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135:8350–8356CrossRefGoogle Scholar
  66. 66.
    Wu J, Dai J, Shao Y, Sun Y (2015) One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging. RSC Adv 5:83581–83587CrossRefGoogle Scholar
  67. 67.
    Erogbogbo F, Chang CW, May J, Prasad PN, Swihart MT (2012) Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. Nanoscale 4:5163–5168CrossRefGoogle Scholar
  68. 68.
    Tu CQ, Ma XC, Pantazis P, Kauzlarich SM, Louie AY (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132:2016–2023CrossRefGoogle Scholar
  69. 69.
    Stan MS, Sima C, Cinteza LO, Dinischiotu A (2015) Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. FEBS J 282:2914–2929CrossRefGoogle Scholar
  70. 70.
    Stan MS, Memet I, Sima C, Popescu T, Teodorescu VS, Hermenean A, Dinischiotu A (2014) Si/SiO2 quantum dots cause cytotoxicity in lung cells through redox homeostasis imbalance. Chem Biol Interact 220:102–115CrossRefGoogle Scholar
  71. 71.
    Stanca L, Sima C, Petrache Voicu SN, Serban AI, Dinischiotu A (2015) In vitro evaluation of the morphological and biochemical changes induced by Si/SiO2 QDs exposure of HepG2 cells. Rom Rep Phys 67:1512–1524Google Scholar
  72. 72.
    De Stefano D, Carnuccio R, Maiuri MC (2012) Nanomaterials toxicity and cell death modalities. J Drug Deliv. Article ID 167896Google Scholar
  73. 73.
    Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132:248–253CrossRefGoogle Scholar
  74. 74.
    Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106:140–152CrossRefGoogle Scholar
  75. 75.
    Luo YH, Wu SB, Wei YH, Chen YC, Tsai MH, Hp CC, Lin SY, Yang CS, Lin P (2013) Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol 26:662–673CrossRefGoogle Scholar
  76. 76.
    Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20CrossRefGoogle Scholar
  77. 77.
    Tu C, Ma X, House A, Kauzlarich SM, Louie AY (2011) PET imaging and biodistribution od silicon quantum dots in mice. ACS Med Chem Lett 2:285–288CrossRefGoogle Scholar
  78. 78.
    Liu J, Erogbogbo F, Yong KT, Ye L, Liu J, Hu R, Chen H, Hu Y, Yang Y, Yang J, Roy I, Karker NA, Swihart MT, Prasad PN (2013) Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7:7303–7310CrossRefGoogle Scholar
  79. 79.
    Erogbogbo F, Yong KT, Roy I, Hu R, Law WC, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423CrossRefGoogle Scholar
  80. 80.
    Stanca L, Petrache SN, Serban AI, Staicu AC, Sima C, Munteanu MC, Zărnescu O, Dinu D, Dinischiotu A (2013) Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications. Nanoscale Res Lett 8:254CrossRefGoogle Scholar
  81. 81.
    Serban AI, Stanca L, Sima C, Staicu AC, Zarnescu O, Dinischiotu A (2015) Complex responses to Si quantum dots accumulation in carp liver tissue: beyond oxidative stress. Chem Biol Interact 239:56–66CrossRefGoogle Scholar
  82. 82.
    Petrache SN, Stanca L, Serban AI, Sima C, Staicu AC, Munteanu MC, Costache M, Burlacu R, Zarnescu O, Dinischiotu A (2012) Structural and oxidative changes in the kidney of crucian carp induced by silicon-based quantum dots. Int J Mol Sci 13:10193–101211CrossRefGoogle Scholar
  83. 83.
    Stanca L, Petrache SN, Radu M, Serban AI, Munteanu MC, Teodorescu D, Staicu AC, Sima C, Costache M, Grigoriu C, Zarnescu O, Dinischiotu A (2012) Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio. Fish Physiol Biochem 38:963–975CrossRefGoogle Scholar
  84. 84.
    Alsharif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR, Datta HK (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5:221–228CrossRefGoogle Scholar
  85. 85.
    Ohta S, Yamura K, Inasawa S, Yamaguchi Y (2015) Aggregates of silicon quantum dots as a drug carrier: selective intracellular drug release based on pH-responsive aggregation/dispersion. Chem Commun 51:6422–6425CrossRefGoogle Scholar
  86. 86.
    Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467CrossRefGoogle Scholar
  87. 87.
    Erogbogbo F, Yong KT, Hu R, Law WC, Ding H, Chang CW, Prasad PN, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4:5131–5138CrossRefGoogle Scholar
  88. 88.
    Erogbogbo F, Chang CW, May JL, Liu L, Kumar R, Law WC, Ding H, Yong KT, Roy I, Sheshadri M, Swihart MT, Prasad PN (2012) Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4:5483–5489CrossRefGoogle Scholar
  89. 89.
    Klein S, Zolk O, Fromm MF, Schrodl F, Neuhuber W, Kryschi C (2009) Functionalized silicon quantum dots tailored for targeted siRNA delivery. Bioch Biophys Res Commun 387:164–168CrossRefGoogle Scholar
  90. 90.
    May JL, Erogbogbo F, Yong KT, Ding H, Law WC, Swihart MT, Prasad PN (2012) Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic® encapsulation and antibody targeting. J Solid Tumors 2:24–37CrossRefGoogle Scholar
  91. 91.
    Erogbogbo F, Liu X, May JL, Narain A, Gladding P, Swihart MT, Prasad PN (2013) Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells. Integr Biol 5:144–150CrossRefGoogle Scholar
  92. 92.
    Hanada S, Fujioka K, Futamura Y, Manabe N, Hoshino A, Yamamoto K (2013) Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: their cytotoxicity and biological effect. Int J Mol Sci 14:1323–1334CrossRefGoogle Scholar
  93. 93.
    Paul A, Jana A, Karthik S, Bera M, Zhao Y, Singh NDP (2016) Photoresponsive real time monitoring silicon quantum dots for regulated delivery of anticancer drugs. J Mater Chem B 4:521–528CrossRefGoogle Scholar
  94. 94.
    Erogbogbo F, May J, Swihart M, Prasad PN, Smart K, Jack SE, Korcyk D, Webster M, Stewart R, Zeng I, Jullig M, Bakeev K, Jamieson M, Kasabov N, Gopalan B, Liang L, Hu R, Schliebs S, Villas-Boas S, Gladding P (2013) Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia. Theranostics 3:719–728CrossRefGoogle Scholar
  95. 95.
    Olson JL, Velez-Montoya R, Mandava N, Stoldt CR (2012) Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degeneration. Invest Ophthalmol Vis Sci 53:5713–5721CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Miruna Silvia Stan
    • 1
  • Cornelia Sima
    • 2
  • Anca Dinischiotu
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
  2. 2.Laser DepartmentNational Institute of Laser, Plasma and Radiation PhysicsBucharest, MagureleRomania

Personalised recommendations