Advertisement

Hepatic Injuries Induced by Engineered Nanomaterials

  • Jianbo Jia
  • Bing YanEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

The production, usage, and disposal of engineered nanomaterial (ENM)-based products inevitably increased their environmental accumulation and human exposures. Liver is the major organ for deposition of ENMs after their clearance from the circulation system. Accumulation of ENMs in liver may cause hepatic oxidative stress, inflammation, DNA damage, hepatocyte death, as well as liver fibrosis in healthy populations. In subpopulations with various liver diseases, such effects may be aggravated. Critical factors such as properties of ENMs, animal experimental protocols, and status of liver are discussed, as well as possible future directions.

Keywords

ENMs Hepatic injury Environmental exposures Physicochemical properties Oxidative stress Inflammation 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFA0203103), the National Natural Science Foundation of China (91543204 and 91643204), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030401) and the Natural Science Foundation of Shandong Province (ZR2014BM026).

References

  1. 1.
    Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4(6):489–499CrossRefGoogle Scholar
  2. 2.
    Lee WM (2003) Medical progress: drug-induced hepatotoxicity. N Engl J Med 349(5):474–485CrossRefGoogle Scholar
  3. 3.
    Navarro VJ, Senior JR (2006) Current concepts—drug-related hepatotoxicity. N Engl J Med 354(7):731–739CrossRefGoogle Scholar
  4. 4.
    Recknagel RO (1967) Carbon tetrachloride hepatotoxicity. Pharmacol Rev 19(2):145–208Google Scholar
  5. 5.
    Thomas LB, Popper H, Berk PD, Selikoff I, Falk H (1975) Vinyl-chloride-induced liver disease. From idiopathic portal hypertension (Banti’s syndrome) to Angiosarcomas. N Engl J Med 292(1):17–22CrossRefGoogle Scholar
  6. 6.
    Percival M (1997) Phytonutrients and detoxification. Clin Nutr Insights 5(2):1–4Google Scholar
  7. 7.
    Vander A, Sherman J, Luciano D (1994) Nonimmune metabolism of foreign chemicals. Hum Physiol 738–740Google Scholar
  8. 8.
    Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, Takenaka S, Möller W, Schmid G, Simon U (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77(3):407–416CrossRefGoogle Scholar
  9. 9.
    Lu X, Ji C, Jin T, Fan X (2015) The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice. Nanotechnology 26(17):175101CrossRefGoogle Scholar
  10. 10.
    Cheng S-H, Li F-C, Souris JS, Yang C-S, Tseng F-G, Lee H-S, Chen C-T, Dong C-Y, Lo L-W (2012) Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano 6(5):4122–4131CrossRefGoogle Scholar
  11. 11.
    Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, Yesilbag Tonga G, Jackson LC, Rotello VM, Vachet RW (2016) Surface charge controls the sub-organ biodistributions of gold nanoparticles. ACS nanoGoogle Scholar
  12. 12.
    Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DH, Xu ZP, Liu X, Roberts MS (2015) Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 3(6):939–958CrossRefGoogle Scholar
  13. 13.
    Hamidi M, Azadi A, Rafiei P, Ashrafi H (2013) A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Critical Reviews™ in Therapeutic Drug Carrier Systems 30(5)Google Scholar
  14. 14.
    Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346CrossRefGoogle Scholar
  15. 15.
    Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5):1410–1415CrossRefGoogle Scholar
  16. 16.
    Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhaoc Y (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019–1024CrossRefGoogle Scholar
  17. 17.
    Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32(16):3988–3999CrossRefGoogle Scholar
  18. 18.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  19. 19.
    Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8):852–870CrossRefGoogle Scholar
  20. 20.
    Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100CrossRefGoogle Scholar
  21. 21.
    Ahmad J, Ahamed M, Akhtar MJ, Alrokayan SA, Siddiqui MA, Musarrat J, Al-Khedhairy AA (2012) Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 259(2):160–168CrossRefGoogle Scholar
  22. 22.
    Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A (2013) TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7(1):48–60CrossRefGoogle Scholar
  23. 23.
    Yuan J, Gao H, Sui J, Chen WN, Ching CB (2011) Cytotoxicity of single-walled carbon nanotubes on human hepatoma HepG2 cells: an iTRAQ-coupled 2D LC–MS/MS proteome analysis. Toxicol In Vitro 25(8):1820–1827CrossRefGoogle Scholar
  24. 24.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983CrossRefGoogle Scholar
  25. 25.
    Zhang T, Hu Y, Tang M, Kong L, Ying J, Wu T, Xue Y, Pu Y (2015) Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo. Int J Mol Sci 16(10):23279–23299CrossRefGoogle Scholar
  26. 26.
    Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng F-D (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191(1):1–8CrossRefGoogle Scholar
  27. 27.
    Liu H, Ma L, Liu J, Zhao J, Yan J, Hong F (2010) Toxicity of nano-anatase TiO2 to mice: liver injury, oxidative stress. Toxicol Environ Chem 92(1):175–186CrossRefGoogle Scholar
  28. 28.
    Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, Ulicna O, Kucharská J, Dusinska M (2015) Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents. Nanotoxicology 9(sup1):95–105CrossRefGoogle Scholar
  29. 29.
    Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5(12):2578–2585CrossRefGoogle Scholar
  30. 30.
    Li Y, Luo HB, Zhang HY, Guo Q, Yao HC, Li JQ, Chang Q, Yang JG, Wang F, Wang CD, Yang X, Liu ZG, Ye X (2016) Potential hepatoprotective effects of fullerenol nanoparticles on alcohol-induced oxidative stress by ROS. RSC Adv 6(37):31122–31130CrossRefGoogle Scholar
  31. 31.
    Amin KA, Hassan MS, Awad E-ST, Hashem KS (2011) The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline. Int J Nanomed 6:143–149CrossRefGoogle Scholar
  32. 32.
    Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM (2013) Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol 28(2):107–118CrossRefGoogle Scholar
  33. 33.
    Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4(1):10CrossRefGoogle Scholar
  34. 34.
    Chen Q, Xue Y, Sun J (2013) Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed 8:1129–1140Google Scholar
  35. 35.
    Chen Q, Xue Y, Sun J (2014) Hepatotoxicity and liver injury induced by hydroxyapatite nanoparticles. J Appl Toxicol 34(11):1256–1264CrossRefGoogle Scholar
  36. 36.
    Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhalation Toxicol 20(6):575–583CrossRefGoogle Scholar
  37. 37.
    Cha K, Hong H-W, Choi Y-G, Lee MJ, Park JH, Chae H-K, Ryu G, Myung H (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30(11):1893–1899CrossRefGoogle Scholar
  38. 38.
    Azim SAA, Darwish HA, Rizk MZ, Ali SA, Kadry MO (2015) Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants. Exp Toxicol Pathol 67(4):305–314CrossRefGoogle Scholar
  39. 39.
    Liu H, Jia G, Chen S, Ma H, Zhao Y, Wang J, Zhang C, Wang S, Zhang J (2015) In vivo biodistribution and toxicity of Gd2O3: Eu3+ nanotubes in mice after intraperitoneal injection. RSC Adv 5(90):73601–73611CrossRefGoogle Scholar
  40. 40.
    Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, Hu R, Hong M, Hong F (2011) Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res, Part A 96(1):221–229CrossRefGoogle Scholar
  41. 41.
    Jin P, Chen Y, Zhang SB, Chen Z (2012) Interactions between Al12X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: implications for nanotoxicity. J Mol Model 18(2):559–568CrossRefGoogle Scholar
  42. 42.
    Li N, Ma L, Wang J, Zheng L, Liu J, Duan Y, Liu H, Zhao X, Wang S, Wang H (2009) Interaction between nano-anatase TiO2 and liver DNA from mice in vivo. Nanoscale Res Lett 5(1):108CrossRefGoogle Scholar
  43. 43.
    Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914CrossRefGoogle Scholar
  44. 44.
    Baweja L, Gurbani D, Shanker R, Pandey AK, Subramanian V, Dhawan A (2011) C60-fullerene binds with the ATP binding domain of human DNA topoiosmerase II alpha. J Biomed Nanotechnol 7(1):177–178CrossRefGoogle Scholar
  45. 45.
    Huang S, Chueh PJ, Lin Y-W, Shih T-S, Chuang S-M (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol Appl Pharmacol 241(2):182–194CrossRefGoogle Scholar
  46. 46.
    Sharma V, Anderson D, Dhawan A (2011) Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7(1):98–99CrossRefGoogle Scholar
  47. 47.
    Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ (2013) Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 93(10):2514–2522CrossRefGoogle Scholar
  48. 48.
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789CrossRefGoogle Scholar
  49. 49.
    Song M-F, Li Y-S, Kasai H, Kawai K (2012) Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50(3):211–216CrossRefGoogle Scholar
  50. 50.
    Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703CrossRefGoogle Scholar
  51. 51.
    Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu D-Y (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159CrossRefGoogle Scholar
  52. 52.
    Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43(S1)Google Scholar
  53. 53.
    Wang Y, Aker WG, H-m H, Yedjou CG, Yu H, Tchounwou PB (2011) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409(22):4753–4762CrossRefGoogle Scholar
  54. 54.
    Loh JW, Yeoh G, Saunders M, Lim L-Y (2010) Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicol Appl Pharmacol 249(2):148–157CrossRefGoogle Scholar
  55. 55.
    Awasthi KK, John PJ, Awasthi A, Awasthi K (2013) Multi walled carbon nano tubes induced hepatotoxicity in Swiss albino mice. Micron 44:359–364CrossRefGoogle Scholar
  56. 56.
    Korani M, Rezayat S, Gilani K, Bidgoli SA, Adeli S (2011) Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomed 6(1):855–862CrossRefGoogle Scholar
  57. 57.
    Abdelhalim MAK, Jarrar BM (2011) Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver. Lipids Health Dis 10(1):166CrossRefGoogle Scholar
  58. 58.
    Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS ONE 8(8):e70618CrossRefGoogle Scholar
  59. 59.
    Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84(3):183–190CrossRefGoogle Scholar
  60. 60.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516CrossRefGoogle Scholar
  61. 61.
    Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS ONE 8(8):e69534CrossRefGoogle Scholar
  62. 62.
    Yuan Y, Liu C, Qian J, Wang J, Zhang Y (2010) Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 31(4):730–740CrossRefGoogle Scholar
  63. 63.
    Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218CrossRefGoogle Scholar
  64. 64.
    Nishimori H, Kondoh M, Isoda K, S-i T, Tsutsumi Y, Yagi K (2009) Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72(3):496–501CrossRefGoogle Scholar
  65. 65.
    Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29(4):330–337CrossRefGoogle Scholar
  66. 66.
    Liu T, Li L, Fu C, Liu H, Chen D, Tang F (2012) Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 33(7):2399–2407CrossRefGoogle Scholar
  67. 67.
    Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States part III: liver, biliary tract, and pancreas. Gastroenterology 136(4):1134–1144CrossRefGoogle Scholar
  68. 68.
    Wang F-S, Fan J-G, Zhang Z, Gao B, Wang H-Y (2014) The global burden of liver disease: the major impact of China. Hepatology 60(6):2099–2108CrossRefGoogle Scholar
  69. 69.
    Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock E-J, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118(4):465CrossRefGoogle Scholar
  70. 70.
    Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, Bhatnagar A, McClain CJ, Cave M (2013) Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem 24(9):1587–1595CrossRefGoogle Scholar
  71. 71.
    Rahman TM, Hodgson HJF (2000) Animal models of acute hepatic failure. Int J Exp Pathol 81(2):145–157CrossRefGoogle Scholar
  72. 72.
    Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, ten Dijke P, Dooley S (2013) Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 304(5):G449CrossRefGoogle Scholar
  73. 73.
    Bartneck M, Ritz T, Keul HA, Wambach M, Jr B, Gbureck U, Ehling J, Lammers T, Heymann F, Gassler N (2012) Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano 6(10):8767–8777CrossRefGoogle Scholar
  74. 74.
    Volarevic V, Paunovic V, Markovic Z, Simovic Markovic B, Misirkic-Marjanovic M, Todorovic-Markovic B, Bojic S, Vucicevic L, Jovanovic S, Arsenijevic N (2014) Large graphene quantum dots alleviate immune-mediated liver damage. ACS Nano 8(12):12098–12109CrossRefGoogle Scholar
  75. 75.
    Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311(8):806–814CrossRefGoogle Scholar
  76. 76.
    Hwang JH, Kim SJ, Kim Y-H, Noh J-R, Gang G-T, Chung BH, Song NW, Lee C-H (2012) Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology 294(1):27–35CrossRefGoogle Scholar
  77. 77.
    Jia J, Li F, Zhou H, Bai Y, Liu S, Jiang Y, Jiang G, Yan B (2017) Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environ Sci TechnolGoogle Scholar
  78. 78.
    Jia J, Li F, Zhai S, Zhou H, Liu S, Jiang G, Yan B (2017) Susceptibility of overweight mice to liver injury as a result of the ZnO nanoparticle-enhanced liver deposition of Pb2+. Environ Sci Technol 51(3):1775–1784Google Scholar
  79. 79.
    Cichoż-Lach H, Michalak A (2014) Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol: WJG 20(25):8082–8091CrossRefGoogle Scholar
  80. 80.
    Dirchwolf M, Ruf AE (2015) Role of systemic inflammation in cirrhosis: from pathogenesis to prognosis. World J Hepatol 7(16):1974–1981CrossRefGoogle Scholar
  81. 81.
    PetkoviĆ J, Žegura B, StevanoviĆ M, Drnovšek N, UskokoviĆ D, Novak S, FilipiČ M (2011) DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5(3):341–353CrossRefGoogle Scholar
  82. 82.
    Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, Sun Y-P, Yan B (2012) Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater Interfaces 4(4):2259–2266CrossRefGoogle Scholar
  83. 83.
    Zhang Y, Tekobo S, Tu Y, Zhou Q, Jin X, Dergunov SA, Pinkhassik E, Yan B (2012) Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces 4(8):4099–4105CrossRefGoogle Scholar
  84. 84.
    Wu L, Zhang Y, Zhang C, Cui X, Zhai S, Liu Y, Li C, Zhu H, Qu G, Jiang G (2014) Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano 8(3):2087–2099CrossRefGoogle Scholar
  85. 85.
    Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M (2012) The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett 208(3):197–213CrossRefGoogle Scholar
  86. 86.
    Zhang Y, Wang Y, Liu A, Xu SL, Zhao B, Zou H, Wang W, Zhu H, Yan B (2016) Modulation of carbon nanotubes’ perturbation to the metabolic activity of CYP3A4 in the liver. Adv Funct Mater 26(6):841–850CrossRefGoogle Scholar
  87. 87.
    Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, Snyder SE, Yan B (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5(9):683–689CrossRefGoogle Scholar
  88. 88.
    Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, Grassian VH, Thorne PS (2014) Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol 11(1):1CrossRefGoogle Scholar
  89. 89.
    Morishita Y, Yoshioka Y, Takimura Y, Shimizu Y, Namba Y, Nojiri N, Ishizaka T, Takao K, Yamashita F, Takuma K (2016) Distribution of silver nanoparticles to breast milk and their biological effects on breast-fed offspring mice. ACS Nano 10(9):8180–8191CrossRefGoogle Scholar
  90. 90.
    Wang Z, Qu G, Su L, Wang L, Yang Z, Jiang J, Liu S, Jiang G (2013) Evaluation of the biological fate and the transport through biological barriers of nanosilver in mice. Curr Pharm Des 19(37):6691–6697CrossRefGoogle Scholar
  91. 91.
    Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7(1):1CrossRefGoogle Scholar
  92. 92.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442CrossRefGoogle Scholar
  93. 93.
    Wei Y, Li Y, Jia J, Jiang Y, Zhao B, Zhang Q, Yan B (2016) Aggravated hepatotoxicity occurs in aged mice but not in young mice after oral exposure to zinc oxide nanoparticles. NanoImpact 3:1–11CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina
  2. 2.School of EnvironmentJinan UniversityGuangzhouChina

Personalised recommendations