Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo

  • Boris A. KatsnelsonEmail author
  • Larisa I. Privalova
  • Marina P. Sutunkova
  • Ilzira A. Minigalieva
  • Vladimir B. Gurvich
  • Vladimir Y. Shur
  • Ekaterina V. Shishkina
  • Oleg H. Makeyev
  • Irene E. Valamina
  • Anatoly N. Varaksin
  • Vladimir G. Panov
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


We studied purposefully produced silver, gold, iron oxide, copper oxide, nickel oxide, manganese oxide, lead oxide, and zinc oxide nanoparticles using two experimental models: (a) a single intratracheal (IT) instillation in low doses 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment; (b) repeated intraperitoneal (IP) injections during 6–7 weeks in non-lethal doses to assess the thus induced subchronic intoxication by a lot of functional and morphological indices and by the distribution and elimination of respective nanoparticles. Along with assessing the toxicity of these metallic nanoparticles (Me-NPs) acting separately, we also studied the same effects of some practically relevant Me-NP combinations. Besides, we carried out a 10-month inhalation experiment with an iron oxide (Fe2O3) nano-aerosol. We demonstrated that Me-NPs are much more noxious as compared with their fine micrometric counterparts although physiological mechanisms of their elimination from lungs proved highly active. At the same time, the in situ cytotoxicity, organ-systemic toxicity and in vivo genotoxicity of Me-NPs having a given geometry strongly depends on their chemical nature as well as on the specific mechanisms of action characteristic of a given metal. Even though being water-insoluble, Me-NPs are significantly solubilized in some biological milieus, and this process plays an important part in their biokinetics in vivo. In toto, Me-NPs are one of the most dangerous occupational and environmental hazards due to their cytotoxicity and genotoxicity, and therefore standards or recommended values of presumably safe Me-NP concentrations in the workplace and ambient air should be significantly lower as compared with those established for their micrometric counterparts. At the same time, the toxicity and even genotoxicity of Me-NPs can be significantly attenuated by background or preliminary administration of adequately composed combinations of some bioactive agents in innocuous doses.


Nanoparticles of metals and metal oxides In vivo toxicity on cell Organ-systemic and organism levels Combined impacts Safe exposure levels 


  1. 1.
    Hedberg YS, Pradhan S, Cappellini F, Karlsson ME, Blomberg E, Karlsson HL, Odnevall Wallinder I, Hedberg JF (2016) Electrochemical surface oxide characteristics of metal nanoparticles (Mn, Cu and Al) and the relation to toxicity. J Electrochim Acta 212:360–371CrossRefGoogle Scholar
  2. 2.
    Katsnelson BA, Privalova LI, Degtyareva TD, Sutunkova MP, Minigalieva IA, Kireyeva EP, Khodos MY, Kozitsina AN, Shur VY, Nikolaeva EV, Vazhenin VA, Potapov AP, Morozova MV, Valamina IE, Tulakina LG, Pichugova SV, Beikin JB (2010) Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles. Cent Eur J Occup Environ Med 16:47–63Google Scholar
  3. 3.
    Katsnelson BA, Privalova LI, Kuzmin SV, Degtyareva TD, Sutunkova MP, Yeremenko OS, Minigalieva IA, Kireyeva EP, Khodos MY, Kozitsina AN, Malakhova NA, Glazyrina JA, Shur VY, Shishkin EI, Nikolaeva EV (2010) Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: are we defenseless against nanoparticles? Int J Occup Environ Health 16:503–519CrossRefGoogle Scholar
  4. 4.
    Katsnelson BA, Degtyareva TD, Minigalieva IA, Privalova LI, Kuzmin SV, Yeremenko OS, Kireyeva EP, Sutunkova MP, Valamina II, Khodos MY, Kozitsina AN, Shur VY, Vazhenin VA, Potapov AP, Morozova MV (2011) Sub-chronic systemic toxicity and bio-accumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int J Toxicol 30:59–68CrossRefGoogle Scholar
  5. 5.
    Katsnelson BA, Privalova LI, Kuzmin SV, Gurvich VB, Sutunkova MP, Kireyeva EP, Minigalieva IA (2012) An approach to tentative reference levels setting for nanoparticles in the workroom air based on comparing their toxicity with that of their micrometric counterparts: a case study of iron oxide Fe3O4. ISRN Nanotechnol 143613Google Scholar
  6. 6.
    Katsnelson BA, Privalova LI, Sutunkova MP, Khodos MY, Shur VY, Shishkina EV, Tulakina LG, Pichugova SV, Beikin JB (2012) Uptake of some metallic nanoparticles by, and their impact on pulmonary macrophages in vivo as viewed by optical, atomic force, and transmission electron microscopy. J Nanomed Nanotechnol 3:1–8Google Scholar
  7. 7.
    Katsnelson BA, Privalova LI, Sutunkova MP, Tulakina LG, Pichugova SV, Beykin JB, Khodos MJ (2012) The “in vivo” interaction between iron oxide Fe3O4 nanoparticles and alveolar macrophages. J Bull Exp Biol Med 152:627–631CrossRefGoogle Scholar
  8. 8.
    Katsnelson BA, Privalova LI, Gurvich VB, Makeyev OH, Shur VY, Beikin YB, Sutunkova MP, Kireyeva EP, Minigalieva IA, Loginova NV, Vasilyeva MS, Korotkov AV, Shuman EA, Vlasova LA, Shishkina EV, Tyurnina AE, Kozin RV, Valamina IE, Pichugova SV, Tulakina LG (2013) Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int J Mol Sci 14:2449–2483CrossRefGoogle Scholar
  9. 9.
    Katsnelson BA, Minigalieva IA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Varaksin AN, Panov VG (2014) Lower airways response in rats to a single or combined intratracheal instillation of manganese and nickel nanoparticles and its attenuation with a bio-protective pre-treatment. J Toksicol Vestn 6:8–14Google Scholar
  10. 10.
    Katsnelson BA, Privalova LI, Gurvich VB, Kuzmin SV, Kireyeva EP, Minigalieva IA, Sutunkova MP, Loginova NV, Malykh OL, Yarushin SV, Soloboyeva JI, Kochneva NI (2014) Enhancing population’s resistance to toxic exposures as an auxilliary tool of decreasing environmental and occupational health risks (a self-overview). J Environ Prot 5:1435–1449CrossRefGoogle Scholar
  11. 11.
    Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Beikin YB, Sutunkova MP, Minigalieva IA, Shishkina EV, Pichugova SV, Tulakina LG, Beljayeva SV (2014) Some characteristics of free cell population in the airways of rats after intratracheal instillation of copper-containing nano-scale particles. Int J Mol Sci 15:21538–21553CrossRefGoogle Scholar
  12. 12.
    Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Valamina IE, Makeyev OH, Sutunkova MP, Minigalieva IA, Kireyeva EP, Rusakov VO, Tyurnina AE, Kozin RV, Meshtcheryakova EY, Korotkov AV, Shuman EA, Zvereva AE, Kostykova SV (2014) Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci 15:12379–12406CrossRefGoogle Scholar
  13. 13.
    Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Grigoryeva EV, Meshtcheryakova EY (2015) Attenuation of combined nickel(II) oxide and manganese(II, III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int J Mol Sci 16(9):22555–22583CrossRefGoogle Scholar
  14. 14.
    Katsnelson BA, Privalova LI, Sutunkova MP, Privalova LI, Varaksin AN, Gurvich VB, Sutunkova MP, Shur VY, Shishkina EV, Valamina IE, Makeyev OH (2015) Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. J Food Chem Toxicol 86:351–364CrossRefGoogle Scholar
  15. 15.
    Katsnelson BA, Panov VG, Minigaliyeva IA, Varaksin AN, Privalova LI, Slyshkina TV, Grebenkina SV (2015) Further development of the theory and mathematical description of combined toxicity: an approach to classifying types of action of three-factorial combinations (a case study of manganese–chromium–nickel subchronic intoxication). Toxicology 334:33–44CrossRefGoogle Scholar
  16. 16.
    Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Makeyev OH, Valamina IE, Grigoryeva EV (2015) Is it possible to enhance the organism’s resistance to toxic effects of metallic nanoparticles? Toxicology 337:79–82CrossRefGoogle Scholar
  17. 17.
    Sutunkova MP, Katsnelson BA, Privalova LI, Gurvich VB, Konysheva LK, Shur VY, Shishkina EV, Minigalieva IA, Solovjeva SN, Grebenkina SV, Zubarev IV (2016) On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology 363:19–28CrossRefGoogle Scholar
  18. 18.
    Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano- and submicron ferric oxide in rats. Toxicology 247:102–111CrossRefGoogle Scholar
  19. 19.
    Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336(2):510–518CrossRefGoogle Scholar
  20. 20.
    Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra A, Prashant C, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989CrossRefGoogle Scholar
  21. 21.
    Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). J Nano Rev 1:5358CrossRefGoogle Scholar
  22. 22.
    Wu X, Tan Y, Mao H, Zhang M (2010) Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomed 5:385–399CrossRefGoogle Scholar
  23. 23.
    Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. J ACS Nano 5(9):7263–7276CrossRefGoogle Scholar
  24. 24.
    Markides H, Rotherham M, El Haj AJ (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:1–11CrossRefGoogle Scholar
  25. 25.
    Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K (2012) Investigating the toxic effects of iron oxide nanoparticles. J Methods Enzymol 509:195–224CrossRefGoogle Scholar
  26. 26.
    Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Res 647974Google Scholar
  27. 27.
    Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. J Small 9(9–10):1533–1545CrossRefGoogle Scholar
  28. 28.
    Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. J Toxicol Appl Pharmacol 233:404–410CrossRefGoogle Scholar
  29. 29.
    Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. J Toxicol Appl Pharmacol 236:310–318CrossRefGoogle Scholar
  30. 30.
    Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticles applications and human health. J Clin Chim Acta 411:1841–1848CrossRefGoogle Scholar
  31. 31.
    Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. J Aquat Toxicol 100:151–159CrossRefGoogle Scholar
  32. 32.
    Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. J Part Fibre Toxicol 7(1):20CrossRefGoogle Scholar
  33. 33.
    Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Comparative toxicity study of Ag, Au, Ag-Au bimetallic nanoparticles on Daphnia magna. J Anal Bioanal Chem 398:689–700CrossRefGoogle Scholar
  34. 34.
    Park EJ, Bae E, Yi Y, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nano-particles. J Environ Toxicol Pharmacol 30:162–168CrossRefGoogle Scholar
  35. 35.
    Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain micro vessel endothelial cells. J Toxicol Sci 118:160–170CrossRefGoogle Scholar
  36. 36.
    Ahmadi F, Kordestany AH (2011) Investigation on silver retention in different organs and oxidative stress enzymes in male broiler fed diet supplemented with powder of nano silver. Amer-Eurasian J Toxicol Sci 3:28–35Google Scholar
  37. 37.
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. J Arch Toxicol 85:743–750CrossRefGoogle Scholar
  38. 38.
    Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cell. J Toxicol Lett 201:27–33CrossRefGoogle Scholar
  39. 39.
    Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. J Mutat Res 726:129–135CrossRefGoogle Scholar
  40. 40.
    Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817CrossRefGoogle Scholar
  41. 41.
    Singh S, D’Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV (2011) Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34:294–301CrossRefGoogle Scholar
  42. 42.
    Srivastava M, Singh S, Self WT (2011) Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. J Environ Health Perspect 120:56–61CrossRefGoogle Scholar
  43. 43.
    Stebounova LV, Adamcakova-Dodd A, Kim JS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. J Part Fibre Toxicol 8(1):5CrossRefGoogle Scholar
  44. 44.
    Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Citotoxic and genotoxic effects of silver nanoparticles in testicular cell. Toxicology 291:65–72CrossRefGoogle Scholar
  45. 45.
    Flower NAL, Brabu B, Revathy M, Gopalakrishnan C, Raja SV, Murugan SS, Kumaravel TS (2012) Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. J Mutat Res 742:61–65CrossRefGoogle Scholar
  46. 46.
    Karlsson HL, Gliga AR, Kohonen P, Wallberg A, Fadeel B (2012) Genotoxic and epigenetic effects of silver nanoparticles. J Toxicol Lett 211S:S35–S42Google Scholar
  47. 47.
    Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, Biris AS, Heflich RH, Chen T (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. J Mutat Res 745:4–10CrossRefGoogle Scholar
  48. 48.
    Lim DH, Jang J, Kim S, Kang T, Lee K, Choi IH (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress in human macrophages using cDNA microarray analysis. Biomaterials 33:4690–4699CrossRefGoogle Scholar
  49. 49.
    Tavares P, Balbino F, de Oliveira HM, Fagundes GE, Venâncio M, Ronconi JVV, Merlini A, Streck EL, da Silva Paula MM, de Andrade VM (2012) Evaluation of genotoxic effect of silver nanoparticles (Ag-NPs) in vitro and in vivo. J Nanopart Res 14(4):1–7CrossRefGoogle Scholar
  50. 50.
    Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? J Toxicol Lett 208:286–292CrossRefGoogle Scholar
  51. 51.
    Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Möller L (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. J Small 8:970–982CrossRefGoogle Scholar
  52. 52.
    Gomes T, Araújo O, Pereira R, Almeida AC, Cravo A, Bebianno MJ (2013) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. J Mar Environ Res 84:51–59CrossRefGoogle Scholar
  53. 53.
    Bakri SJ, Pulido JS, Mukerjee P, Marler RJ, Mukhopadhyay D (2008) Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. J Retina 28:147–149CrossRefGoogle Scholar
  54. 54.
    Chen YSh, Hung YCh, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. J Nanoscale Res Lett 4:858–864CrossRefGoogle Scholar
  55. 55.
    Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. J Small 5:2067–2076CrossRefGoogle Scholar
  56. 56.
    Balasurbamanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. J Biomater 31:2034–2042CrossRefGoogle Scholar
  57. 57.
    Zhang Q, Hitchins VM, Schrand AM, Hussain SM, Goering PL (2010) Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of proinflammatory mediators. Nanotoxicology 5:284–295CrossRefGoogle Scholar
  58. 58.
    Glazer ES, Zhu C, Hamir AN, Borne A, Thompson CS, Curley SA (2011) Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology 5:459–468CrossRefGoogle Scholar
  59. 59.
    Li JJ, Lo SL, Ng CT, Gurung RL, Hartono D, Hande MP, Ong CN, Bay BH, Yung LY (2011) Genomic instability of gold nanoparticle treated human lung fibroblast cells. J Biomater 32:5515–5523CrossRefGoogle Scholar
  60. 60.
    Mustafa T, Watanabe F, Monroe W, Mahmood M, Xu Y, Saeed LM, Karmakar A, Casciano D, Ali S, Biris AS (2011) Impact of gold nanoparticle concentration on their cellular uptake by MC3T3-E1 mouse osteoblastic cells as analyzed by transmission electron microscopy. J Nanomed Nanotechnol 2:1–8Google Scholar
  61. 61.
    Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF (2011) Brain microvessel endothelial cells responses to gold nanoparticles: in vitro pro-inflammatory mediators and permeability. J Nanotoxicol 5:479–492CrossRefGoogle Scholar
  62. 62.
    Choi SY, Jeong S, Jang SH, Park J, Park JH, Ock KS, Lee SY, Joo SW (2012) In vitro toxicity protein-adsorbed citrate-reduced gold nanoparticles in human lung adenocarcinoma cells. J Toxicol In Vitro 26:229–237CrossRefGoogle Scholar
  63. 63.
    Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. J Chem Soc Rev 41:2256–2282CrossRefGoogle Scholar
  64. 64.
    Rudolf R, Friedrich B, Stopic S, Anzel I, Tomic S, Colic M (2012) Cytotoxicity of gold nanoparticles prepared by ultrasonic spray pyrolysis. J Biomater Appl 26:595–612CrossRefGoogle Scholar
  65. 65.
    Shulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Gröters S, van Ravenzwaay B, Landsiedel R (2012) Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. J Mutat Res 745:51–57CrossRefGoogle Scholar
  66. 66.
    Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. J Toxicol Lett 25:109–120CrossRefGoogle Scholar
  67. 67.
    Karlsson H, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. J Chem Res Toxicol 21:1726–1732CrossRefGoogle Scholar
  68. 68.
    Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. J Toxicol Lett 1:169–174CrossRefGoogle Scholar
  69. 69.
    Bondarenko O, Ivask A, Käkinen A, Kahru A (2012) Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. J Environ Pollut 169:81–89CrossRefGoogle Scholar
  70. 70.
    Magaye R, Zhao J, Bowman L, Ding M (2012) Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. J Exp Ther Med 4:551–561Google Scholar
  71. 71.
    Pang C, Selck H, Misra SK, Berhanu D, Dybowska A, Valsami-Jones E, Forbes VE (2012) Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. J Aquat Toxicol 15:114–122CrossRefGoogle Scholar
  72. 72.
    Akhtar MJ, Kumar S, Alhadlaq HA, Alrokayan SA, Abu-Salah KM, Ahamed M (2013) Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. J Toxicol Ind Health 32:5Google Scholar
  73. 73.
    Alarifi S, Ali D, Verma A, Alakhtani S, Ali BA (2013) Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol 32:296–307CrossRefGoogle Scholar
  74. 74.
    Cuillel M, Chevallet M, Charbonnier P, Fauquant C, Pignot-Paintrand I, Arnaud J, Cassio D, Michaud-Soret I, Mintz E (2014) Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. J Nanoscale 16:1707–1715CrossRefGoogle Scholar
  75. 75.
    Xu J, Li Z, Xu P, Xiao L, Yang Z (2013) Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. J Arch Toxicol 87:1067–1073CrossRefGoogle Scholar
  76. 76.
    Zhang Q, Yukinori K, Sato K, Nakakuki K, Kohyama N, Donaldson K (1998) Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health 53:423–438CrossRefGoogle Scholar
  77. 77.
    Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Hashiba M, Mizuguchi Y, Kambara T, Lee BW, Kuroda E, Tanaka I (2011) Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J Occup Health 53(4):293–295CrossRefGoogle Scholar
  78. 78.
    Magaye R, Zhao J (2012) Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environ Toxicol Pharmacol 34(3):644–650CrossRefGoogle Scholar
  79. 79.
    Capasso L, Camatini M, Gualtieri M (2014) Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 226(1):28–34CrossRefGoogle Scholar
  80. 80.
    Pang H, Zhang B, Du J, Chen J, Zhanga J, Lia S (2012) Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. J RSC Adv 2:2257–2261CrossRefGoogle Scholar
  81. 81.
    Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. J Toxicol Sci 92(2):456–463CrossRefGoogle Scholar
  82. 82.
    Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P (2013) Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol 33(10):1165–1179CrossRefGoogle Scholar
  83. 83.
    Bellusci M, La Barbera A, Padella F, Mancuso M, Pasquo A, Grollino MG, Leter G, Nardi E, Cremisini C, Giardullo P, Pacchierotti F (2014) Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int J Nanomed 9:1919–1929Google Scholar
  84. 84.
    Wang B, Fen WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. J Toxicol Lett 161(2):115–123CrossRefGoogle Scholar
  85. 85.
    Cho WS, Duffin R, Howie S, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. J Part Fibre Toxicol. 8:27Google Scholar
  86. 86.
    Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, Grassian VH, Thorne PS (2014) Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. J Part Fibre Toxicol. 11:15Google Scholar
  87. 87.
    Jacobsen NR, Stoeger T, van den Brule S, Saber AT, Beyerle A, Vietti G, Mortensen A, Szarek J, Budtz HC, Kermanizadeh A, Banerjee A, Ercal N, Vogel U, Wallin H, Møller P (2015) Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol 85:84–95CrossRefGoogle Scholar
  88. 88.
    Gao F, Ma NJ, Zhou H, Wang Q, Zhang H, Wang P, Hou H, Wen H, Li L (2016) Zinc oxide nanoparticles induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes. Int J Nanomed 11:3859–3874CrossRefGoogle Scholar
  89. 89.
    Shaikh SM, Shyama SK, Desai PV (2015) Absorption, LD50 and effects of CoO, MgO and PbO nanoparticles on mice “Mus musculus”. IOSR-JESTFT 9(2):32–38Google Scholar
  90. 90.
    Amiri A, Mohammadi M, Shabani M (2016) Synthesis and toxicity evaluation of lead oxide (PbO) nanoparticles in rats. Electron J Biol 12(2):110–114Google Scholar
  91. 91.
    Ali SF, Boulton MC, Braydish-Stolle LK, Murdock RC, Jiang H, Rongzhu L, Miltatovic D, Aschner M, Schlager JJ, Hussain SM (2009) Cytotoxic effects of manganese nanoparticles using different solvent system in astrocytes and neuronal cultured cell. FASEB 23(1), suppl.759.3Google Scholar
  92. 92.
    Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG (2011) Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. J Toxicol Appl Pharmacol 256(3):227–240CrossRefGoogle Scholar
  93. 93.
    Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. J Part Fibre Toxicol 7(1):2CrossRefGoogle Scholar
  94. 94.
    ICRP (1994) Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann. ICRP, vol 24, pp 1–482Google Scholar
  95. 95.
    Kreyling WG, Geiser M (2009) Dosimetry of inhaled nanoparticles. In: Marijnissen JCM, Gradon L (eds) Nanoparticles in medicine and environment, inhalation and health effects. Springer, DordrechtGoogle Scholar
  96. 96.
    Fröhlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci 15:4795–4822CrossRefGoogle Scholar
  97. 97.
    Sadauskas E, Wallin H, Stolenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Kupffer cells are central in the removal of nanoparticles from the organism. J Part Fibre Toxicol 4:10–16CrossRefGoogle Scholar
  98. 98.
    Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. J Biochem Biophys Res Commun 393:649–655CrossRefGoogle Scholar
  99. 99.
    Rylova ML (1964) Methods of investigating long-term effects of noxious environmental agents in animal experiments. Meditsina, LeningradGoogle Scholar
  100. 100.
    Abeyemi OO, Yemitan OK, Taiwo AE (2006) Neurosedative and muscle-relaxant activities of ethyl acetate extract of Baphianitida nitida AFZEL. Ethnopharmacology 106:312–316CrossRefGoogle Scholar
  101. 101.
    Fernandez SP, Wasowski C, Loscalzo LM, Granger RE, Johnston GA, Paladini AC, Marder M (2006) Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 539:168–176CrossRefGoogle Scholar
  102. 102.
    Donaldson K, Stone V, Tran CK, Kreyling W, Borm PJ (2004) Nanotoxicology (editorial). J Occup Environ Med 61:727–728CrossRefGoogle Scholar
  103. 103.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studied of ultrafine particles. J Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  104. 104.
    Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. J Swiss Med Wkly 142(24):w13609Google Scholar
  105. 105.
    Kilburn KH (1969) Alveolar clearance of particles. A bullfrog lung model. J Arch Environ Health 18:556–563CrossRefGoogle Scholar
  106. 106.
    Renwick L, Brown D, Clouter K, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. J Occup Environ Med 61:442–447CrossRefGoogle Scholar
  107. 107.
    Stoeger T, Reinhard C, Takenaka Sh, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. J Environ Health Perspect 114(3):328–333CrossRefGoogle Scholar
  108. 108.
    Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129CrossRefGoogle Scholar
  109. 109.
    Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. J Environ Health Perspect 115:397–402CrossRefGoogle Scholar
  110. 110.
    Warheit DB, Reed KL, Sayes CM (2009) A role fore surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology 3:181–187CrossRefGoogle Scholar
  111. 111.
    Privalova LI (1990) Hygienic dimensions of non-specific action of low-soluble dust particles. Dissertation, The Medical Research Center for Prophylaxis and Health Protection in Industrial WorkersGoogle Scholar
  112. 112.
    Privalova LI, Katsnelson BA, Sharapova NY, Kislitsina NS (1995) On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis. Med Lav 86:511–521Google Scholar
  113. 113.
    Katsnelson BA, Konysheva LK, Privalova LY, Morosova KI (1992) Development of a multicompartmental model of the kinetics of quartz dust in the pulmonary region of the lung during chronic inhalation exposure of rats. Brit J Ind Med 49:172–181Google Scholar
  114. 114.
    Katsnelson BA, Konyscheva LK, Sharapova NY, Privalova LI (1994) Prediction of the comparative intensity of pneumoconiotic changes caused by chronic inhalation exposure to dusts of different cytotoxicity by means of a mathematical model. J Occup Environ Med 51:173–180CrossRefGoogle Scholar
  115. 115.
    Katsnelson BA, Konysheva LK, Privalova LY, Sharapova NY (1997) Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: further evidence of the key role of the cytotoxicity of quartz particles. J Inhalation Toxicol 9:703–715CrossRefGoogle Scholar
  116. 116.
    Minigalieva IA, Katsnelson BA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, Sutunkova MP, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Grigoryeva EV, Klinova SV (2017) In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology 380:72–93CrossRefGoogle Scholar
  117. 117.
    Bastus NG, Casals E, Socorro VC, Puntes V (2008) Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology 2(3):99–112CrossRefGoogle Scholar
  118. 118.
    Fröhlich E (2013) Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. J Curr Drug Metab 14:976–988CrossRefGoogle Scholar
  119. 119.
    Privalova LI, Katsnelson BA, Osipenko AB, Yushkov BN, Babushkina LG (1980) Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity. J Environ Health Perspect 35:205–218CrossRefGoogle Scholar
  120. 120.
    Katsnelson BA, Privalova LI (1984) Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles. J Environ Health Perspect 55:313–325CrossRefGoogle Scholar
  121. 121.
    Privalova LI, Katsnelson BA, Yelnichnykh LN (1987) Some peculiarities of the pulmonary phagocytotic response, dust kinetics, and silicosis development during long term exposure of rats to high quartz levels. Brit J Ind Med 44:228–235Google Scholar
  122. 122.
    Utembe W, Potgieter K, Stefaniak AB, Gulumian M (2015) Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. J Part Fibre Toxicol 12(1):11CrossRefGoogle Scholar
  123. 123.
    Tong T, Wilke CM, Wu J, Binh CT, Kelly JJ, Gaillard JF, Gray KA (2015) Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ Sci Technol 49(13):8113–8123CrossRefGoogle Scholar
  124. 124.
    Varaksin AN, Katsnelson BA, Panov VG, Privalova LI, Kireyeva EP, Valamina IE, Beresneva OY (2014) Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead. Food Chem Toxicol 64:144–156CrossRefGoogle Scholar
  125. 125.
    Panov VG, Katsnelson BA, Varaksin AN, Privalova LI, Kireyeva EP, Sutunkova MP, Valamina IE, Beresneva OYu (2015) Further development of mathematical description for combined (a case study of lead–fluoride combination). Toxicol Rep 2:297–307CrossRefGoogle Scholar
  126. 126.
    Box GEP, Draper NR (2007) Response surfaces, mixtures, and ridge analyses. Wiley, HobokenCrossRefGoogle Scholar
  127. 127.
    Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298(3):865–872Google Scholar
  128. 128.
    Euling S, Gennings C, Wilson EM, Kemppainen JA, Kelce WR, Kimmel CA (2002) Response-surface modeling of the effect of 5α-dihydrotestosterone and androgen receptor levels on the response to the androgen antagonist vinclozolin. Toxicol Sci 69(2):332–343CrossRefGoogle Scholar
  129. 129.
    Myers JP, vom Saal FS, Akingbemi BT, Arizono K, Belcher S, Colborn T, Chahoud I, Crain DA, Farabollini F, Guillette LJ Jr, Hassold T, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Laufer H, Marcus M, McLachlan JA, Nadal A, Oehlmann J, Olea N, Palanza P, Parmigiani S, Rubin BS, Schoenfelder G, Sonnenschein C, Soto AM, Talsness CE, Taylor JA, Vandenberg LN, Vandenbergh JG, Vogel S, Watson CS, Welshons WV, Zoeller RT (2009) Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. J Environ Health Perspect 117(3):309–315CrossRefGoogle Scholar
  130. 130.
    CDC and NIOSH: Current Intelligence Bulletin 63: (2011) Occupational exposure to titanium dioxide. US Department of Health and Human Services, NIOSH, CincinnatiGoogle Scholar
  131. 131.
    Safe Work Australia (2010) Hazardous Substances Information System (HSIS). Accessed 1 Nov 2009
  132. 132.
    Katsnelson BA, Privalova LI, Kuzmin SV, Degtyareva TD, Soloboyeva JI (2008) “Biological prophylaxis”—One of the ways to proceed from the analytical environmental epidemiology to the population health protection. Cent Eur J Occup Environ Med 14:41–42Google Scholar
  133. 133.
    Morosova KI, Aronova GV, Katsnelson BA, Velichkovski BT, Genkin AM, Elnichnykh LN, Privalova LI (1982) On the defensive action of glutamate on the cytotoxicity and fibrogenicity of quartz dust. Brit J Ind Med 39:244–252Google Scholar
  134. 134.
    Karki P, Webb A, Smith K, Lee K, Son DS, Aschner M, Lee E (2013) CREB and NF-kappaB mediate the tamoxifen-induced up-regulation of GLT-1 in rat astrocytes. J Biol Chem 288(40):28975–28986CrossRefGoogle Scholar
  135. 135.
    White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, Rossi-George A, Lasley SM, Qian YC, Basha MR (2007) New and evolving concepts in the neurotoxicology of lead. J Toxicol Appl Pharmacol 225(1):1–27CrossRefGoogle Scholar
  136. 136.
    Desole MS, Esposito G, Migheli R, Sircana S, Delogu MR, Fresu L, Miele M, de Natale G, Miele E (1997) Glutathione deficiency potentiates manganese toxicity in rat striatum and brainstem and in PC12 cells. J Pharmacol Res 36(4):285–292CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Boris A. Katsnelson
    • 1
    Email author
  • Larisa I. Privalova
    • 1
  • Marina P. Sutunkova
    • 1
  • Ilzira A. Minigalieva
    • 1
  • Vladimir B. Gurvich
    • 1
  • Vladimir Y. Shur
    • 2
  • Ekaterina V. Shishkina
    • 2
  • Oleg H. Makeyev
    • 3
  • Irene E. Valamina
    • 3
  • Anatoly N. Varaksin
    • 4
  • Vladimir G. Panov
    • 4
  1. 1.The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial WorkersEkaterinburgRussia
  2. 2.School of Natural Sciences and MathematicsThe Ural Federal UniversityEkaterinburgRussia
  3. 3.The Ural State Medical UniversityEkaterinburgRussia
  4. 4.The Institute of Industrial EcologyThe Ural Branch of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations