Advertisement

The Toxicity of Nanoparticles to Algae

  • Yulin TangEmail author
  • Huaijia Xin
  • Tyler Malkoske
  • Daqiang Yin
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Nanoparticles (NPs) display unique physical and chemical properties to the toxicity of algae. Among the NPs, metal oxide NPs such as titanium dioxide (nano-TiO2), zinc oxide (ZnO NPs), and copper oxide (CuO NPs) are the most used nanomaterials. Silver nanoparticles (Ag NPs), gold nanoparticles (Au NPs), and zero-valent iron nanoparticles (nZVI) have received considerable attention among noble metal materials. Besides, Quantum dots (QDs) and carbon-based nanoparticles are also common. To assess the ecological response of algae to NPs, we provide an overview of NPs ecotoxicological effects on algae from existing data and focus on the effect of different NPs on algae, the underlying mechanisms of NPs toxicity and their toxic effects on algae. Among the data available, NPs have been shown to exert from inhibitive to lethal effects on algae due to a high surface area, nanoscale size effects, and quantum effects.

Keywords

Algae Toxicity Nanoparticles Mechanisms 

References

  1. 1.
    Dunphy KA, Guzmán MRT, Banfield JF (2006) Environmental risks of nanotechnology: national nanotechnology initiative funding. Environ Sci Technol 6:2000–2004Google Scholar
  2. 2.
    Ji J, Long ZF, Lin DH (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170(2–3):525–530CrossRefGoogle Scholar
  3. 3.
    Cepoi L, Rudi L, Chiriac T, Valuta A, Zinicovscaia I, Duca G, Kirkesali E, Frontasyeva M, Culicov O, Pavlov S, Bobrikov I (2015) Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles. Can J Microbiol 61(1):13–21CrossRefGoogle Scholar
  4. 4.
    Das P, Metcalfe CD, Xenopoulos MA (2014) Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol 48(8):4573–4580CrossRefGoogle Scholar
  5. 5.
    Ksiazyk M, Asztemborska M, Steborowski R, Bystrzejewska-Piotrowska G (2015) Toxic effect of silver and platinum nanoparticles toward the freshwater microalgal Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol 94(5):554–558CrossRefGoogle Scholar
  6. 6.
    Chang NB, Wanielista M, Hossain F, Zhai L, Lin KS (2008) Integrating nanoscale zero-valent iron and titanium dioxide for nutrient removal in stormwater systems. NANO 3(4):297–300CrossRefGoogle Scholar
  7. 7.
    Garcia-Cambero JP, Garcia MN, Lopez GD, Herranz AL, Cuevas L, Perez-Pastrana E, Cuadal JS, Castelltort MR, Calvo AC (2013) Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere 93(6):1194–1200CrossRefGoogle Scholar
  8. 8.
    Sijie Lin PB, Rajapakse NC, Brune DE, Ke PC (2009) Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113(25):10962–10966CrossRefGoogle Scholar
  9. 9.
    Lambreva MD, Lavecchia T, Tyystjarvi E, Antal TK, Orlanducci S, Margonelli A, Rea G (2015) Potential of carbon nanotubes in algal biotechnology. Photosynth Res 125(3):451–471CrossRefGoogle Scholar
  10. 10.
    Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol 46(15):8458–8466CrossRefGoogle Scholar
  11. 11.
    Zhou H, Wang XJ, Zhou Y, Yao HZ, Ahmad F (2014) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406(15):3689–3695CrossRefGoogle Scholar
  12. 12.
    Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46(21):12178–12185CrossRefGoogle Scholar
  13. 13.
    Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z (2015) Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat Toxicol 158:1–13CrossRefGoogle Scholar
  14. 14.
    Nicolas M, Séverine LM, Anne B-N, Pascal P (2015) Effect of two TiO2 nanoparticles on the growth of unicellular green algae using the OECD 201 test guideline: influence of the exposure system. Toxicol Environ Chem 98(8):860–876CrossRefGoogle Scholar
  15. 15.
    Organisation for Economic Cooperation and Development (1984) Algal growth inhibition test. OECD Guidelines for Testing of Chemicals 201, Paris, FranceGoogle Scholar
  16. 16.
    Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91(4):536–544CrossRefGoogle Scholar
  17. 17.
    Yu Morgalev Y, Morgaleva T, Gosteva I, Morgalev S, Kulizhskiy S, Astafurova T (2015) Effect of zink oxyde nanoparticles on the test function of water organisms of different trophic levels. In IOP conference series: materials science and engineering. 012005Google Scholar
  18. 18.
    Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16(10):23929–23969CrossRefGoogle Scholar
  19. 19.
    Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants and natural phytoplankton. Biochem Physiol Pflanz 8:53–59Google Scholar
  20. 20.
    Jagadeesh E, Khan B, Chandran P, Khan SS (2015) Toxic potential of iron oxide, CdS/Ag2S composite, CdS and Ag2S NPs on a fresh water alga Mougeotia sp. Colloids Surf, B 125:284–290CrossRefGoogle Scholar
  21. 21.
    Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468CrossRefGoogle Scholar
  22. 22.
    Roy R, Parashar A, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species. Aquat Toxicol 176:161–171CrossRefGoogle Scholar
  23. 23.
    Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13(4):225–232CrossRefGoogle Scholar
  24. 24.
    Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles-testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269(2–3):190–197CrossRefGoogle Scholar
  25. 25.
    Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30(4):861–869CrossRefGoogle Scholar
  26. 26.
    Dalai S, Pakrashi S, Joyce Nirmala M, Chaudhri A, Chandrasekaran N, Mandal AB, Mukherjee A (2013) Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquat Toxicol 138–139:1–11CrossRefGoogle Scholar
  27. 27.
    Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res Int 23(3):2821–2830CrossRefGoogle Scholar
  28. 28.
    Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu GM, Kumar GK, Nagarajan R, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38CrossRefGoogle Scholar
  29. 29.
    Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196CrossRefGoogle Scholar
  30. 30.
    Spisni E, Seo S, Joo SH, Su C (2016) Release and toxicity comparison between industrial- and sunscreen-derived nano-ZnO particles. Int J Environ Sci Technol 13(10):2485–2494CrossRefGoogle Scholar
  31. 31.
    Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29(9):2587–2595CrossRefGoogle Scholar
  32. 32.
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticles ZnO, bulk ZnO and ZnCl2 to a freshwater microalgae (Pseudokirchneriella subcapitata) the importance of particle solubility. Environ Sci Technol 41(24):8484–8490CrossRefGoogle Scholar
  33. 33.
    Robert J, Miller HSL, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334CrossRefGoogle Scholar
  34. 34.
    Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142–143(4):431–440CrossRefGoogle Scholar
  35. 35.
    Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87(11):1388–1394CrossRefGoogle Scholar
  36. 36.
    Babu MY, Palanikumar L, Nagarani N, Devi VJ, Kumar SR, Ramakritinan CM, Kumaraguru AK (2014) Cadmium and copper toxicity in three marine macroalgae: evaluation of the biochemical responses and DNA damage. Environ Sci Pollut Res 21:9604–9616CrossRefGoogle Scholar
  37. 37.
    Gouveia C, Kreusch M, Schmidt ÉC, Felix MR, Osorio LK, Pereira DT, dos Santos R, Ouriques LC, Martins Rde P, Latini A, Ramlov F, Carvalho TJ, Chow F, Maraschin M, Bouzon ZL (2013) The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc Microanal 19(3):513–524CrossRefGoogle Scholar
  38. 38.
    Manusadzianas L, Caillet C, Fachetti L, Gylyte B, Grigutyte R, Jurkoniene S, Karitonas R, Sadauskas K, Thomas F, Vitkus R, Ferard JF (2012) Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31(1):108–114CrossRefGoogle Scholar
  39. 39.
    Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009CrossRefGoogle Scholar
  40. 40.
    Nogueira PF, Nakabayashi D, Zucolotto V (2015) The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat Toxicol 166:29–35CrossRefGoogle Scholar
  41. 41.
    Pretti C, Oliva M, Pietro RD, Monni G, Cevasco G, Chiellini F, Pomelli C, Chiappe C (2014) Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol Environ Saf 101:138–145CrossRefGoogle Scholar
  42. 42.
    Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL (2013) Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Adv 3(22):8180CrossRefGoogle Scholar
  43. 43.
    Wang Z, Gao Y, Wang S, Fang H, Xu D, Zhang F (2016) Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity. Environ Sci Pollut Res Int 23(11):10938–10945CrossRefGoogle Scholar
  44. 44.
    Hu C, Hu N, Li X, Zhao Y (2016) Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus. Ecotoxicol Environ Saf 132:360–365CrossRefGoogle Scholar
  45. 45.
    Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7):1121–1128CrossRefGoogle Scholar
  46. 46.
    Chen Q, Hu X, Yin D, Wang R (2016) Effect of subcellular distribution on nC60 uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna. Ecotoxicol Environ Saf 128:213–221CrossRefGoogle Scholar
  47. 47.
    Tao X, Li C, Zhang B, He Y (2016) Effects of aqueous stable fullerene nanocrystals (nC60) on the food conversion from Daphnia magna to Danio rerio in a simplified freshwater food chain. Chemosphere 145:157–162CrossRefGoogle Scholar
  48. 48.
    Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100(2):194–201CrossRefGoogle Scholar
  49. 49.
    Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144CrossRefGoogle Scholar
  50. 50.
    Hull MS, Kennedy AJ, Steevens JA, Bednar AJ, Weiss CA Jr, Vikesland PJ (2009) Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ Sci Technol 43:4169–4174CrossRefGoogle Scholar
  51. 51.
    Pumera M, Sánchez S, Ichinose I, Tang J (2007) Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Sens Actuators B Chem 123(2):1195–1205CrossRefGoogle Scholar
  52. 52.
    Yang K, Xing KB (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev 110:5989–6008CrossRefGoogle Scholar
  53. 53.
    Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231CrossRefGoogle Scholar
  54. 54.
    Chen CY, Jafvert CT (2010) Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water. Environ Sci Technol 44:6674–6679CrossRefGoogle Scholar
  55. 55.
    Andre Nel TX, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  56. 56.
    Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413CrossRefGoogle Scholar
  57. 57.
    Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27:1948–1957CrossRefGoogle Scholar
  58. 58.
    Garcia-Cambero JP, Nunez Garcia M, Lopez GD, Herranz AL, Cuevas L, Perez-Pastrana E, Cuadal JS, Castelltort MR, Calvo AC (2013) Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere 93(6):1194–1200CrossRefGoogle Scholar
  59. 59.
    Behra R, Wagner B, Sgier L, Kistler D (2015) Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii. Aquat Geochem 21(2–4):331–342CrossRefGoogle Scholar
  60. 60.
    Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41(2):116–126CrossRefGoogle Scholar
  61. 61.
    He D, Dorantes-Aranda JJ, Waite TD (2012) Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46(16):8731–8738CrossRefGoogle Scholar
  62. 62.
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughun MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  63. 63.
    Pádrová K, Lukavský J, Nedbalová L, Čejková A, Cajthaml T, Sigler K, Vítová M, Řezanka T (2014) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27(4):1443–1451CrossRefGoogle Scholar
  64. 64.
    Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17CrossRefGoogle Scholar
  65. 65.
    Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512CrossRefGoogle Scholar
  66. 66.
    Domingos RF, Simon DF, Hauser C, Wilkinson KJ (2011) Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii—nanoparticles or the free ions? Environ Sci Technol 45(18):7664–7669CrossRefGoogle Scholar
  67. 67.
    Wang Y, Miao AJ, Luo J, Wei ZB, Zhu JJ, Yang LY (2013) Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47(18):10601–10610CrossRefGoogle Scholar
  68. 68.
    Uyusur B, Darnault CJ, Snee PT, Koken E, Jacobson AR, Wells RR (2010) Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J Contam Hydrol 118(3–4):184–198CrossRefGoogle Scholar
  69. 69.
    Zhang S, Jiang Y, Chen CS, Creeley D, Schwehr KA, Quigg A, Chin WC, Santschi PH (2013) Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquat Toxicol 126:214–223CrossRefGoogle Scholar
  70. 70.
    Tang Y, Li S, Qiao J, Wang H, Li L (2013) Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp. Int J Mol Sci 14(7):14395–14407CrossRefGoogle Scholar
  71. 71.
    Tang YL, Tian JL, Li SY, Xue CH, Xue ZH, Yin DQ, Yu SL (2015) Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci Total Environ 532:154–161CrossRefGoogle Scholar
  72. 72.
    Wang Z, Gao Y, Wang S, Fang H, Xu D, Zhang F (2016) Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity. Environ Sci Pollut Res 23(11):10938–10945CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yulin Tang
    • 1
    • 2
    Email author
  • Huaijia Xin
    • 1
    • 2
  • Tyler Malkoske
    • 1
    • 2
  • Daqiang Yin
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Yangtze River Water EnvironmentMinistry of EducationShanghaiPeople’s Republic of China

Personalised recommendations