Skip to main content

Fog Computing: A Taxonomy, Survey and Future Directions

  • Chapter
  • First Online:

Part of the book series: Internet of Things ((ITTCC))

Abstract

In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named “Fog computing” has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features. We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dastjerdi, A., H. Gupta, R. Calheiros, S. Ghosh, and R. Buyya. 2016. Chapter 4—fog computing: Principles, architectures, and applications. In Internet of Things: Principles and Paradigms, ed. R. Buyya, and A.V. Dastjerdi, 61–75. New York: Morgan Kaufmann.

    Google Scholar 

  2. Sarkar, S., and S. Misra. 2016. Theoretical modelling of fog computing: A green computing paradigm to support iot applications. IET Networks 5(2): 23–29.

    Google Scholar 

  3. Bonomi, F., R. Milito, J. Zhu, and S.Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing, ACM, 13–16.

    Google Scholar 

  4. Sarkar, S., S. Chatterjee, and S. Misra. 2015. Assessment of the suitability of fog computing in the context of internet of things. IEEE Transactions on Cloud Computing PP(99): 1–1.

    Google Scholar 

  5. Garcia Lopez, P., A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere. 2015. Edge-centric computing: Vision and challenges. ACM SIGCOMM Computer Communication Review 45(5): 37–42.

    Google Scholar 

  6. Varghese, B., N. Wang, S. Barbhuiya, P. Kilpatrick, and D.S. Nikolopoulos. 2016. Challenges and opportunities in edge computing. In Proceedings of the IEEE International Conference on Smart Cloud, 20–26.

    Google Scholar 

  7. Shi, W., J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: vision and challenges. IEEE Internet of Things Journal 3(5): 637–646.

    Google Scholar 

  8. Hu, Y.C., M. Patel, D. Sabella, N. Sprecher, and V. Young. 2015. Mobile edge computinga key technology towards 5g. ETSI White Paper 11: 1–16.

    Google Scholar 

  9. Klas, G.I. 2015. Fog Computing and Mobile Edge Cloud Gain Momentum Open Fog Consortium, ETSI MEC and Cloudlets. http://yucianga.info/?p=938.

  10. Cau, E., M. Corici, P. Bellavista, L. Foschini, G. Carella, A. Edmonds, and T.M. Bohnert. 2016. Efficient exploitation of mobile edge computing for virtualized 5g in epc architectures. In 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), (March 2016), 100–109.

    Google Scholar 

  11. Ahmed, A., and E. Ahmed. 2016. A survey on mobile edge computing. In Proceedings of the 10th IEEE International Conference on Intelligent Systems and Control (ISCO 2016), Coimbatore, India.

    Google Scholar 

  12. Mahmud, M.R., M. Afrin, M.A. Razzaque, M.M. Hassan, A. Alelaiwi, and M. Alrubaian. 2016. Maximizing quality of experience through context-aware mobile application scheduling in cloudlet infrastructure. Software: Practice and Experience 46(11): 1525–1545. spe.2392.

    Google Scholar 

  13. Sanaei, Z., S. Abolfazli, A. Gani, and R. Buyya. 2014. Heterogeneity in mobile cloud computing: Taxonomy and open challenges. IEEE Communications Surveys and Tutorials 16(1): 369–392.

    Google Scholar 

  14. Bahl, P., R.Y. Han, L.E. Li, and M. Satyanarayanan. 2012. Advancing the state of mobile cloud computing. In Proceedings of the third ACM workshop on Mobile cloud computing and services, ACM, 21–28.

    Google Scholar 

  15. Satyanarayanan, M., G. Lewis, E. Morris, S. Simanta, J. Boleng, and K. Ha. 2013. The role of cloudlets in hostile environments. IEEE Pervasive Computing 12(4): 40–49.

    Google Scholar 

  16. Lee, W., K. Nam, H.G. Roh, S.H. Kim. 2016. A gateway based fog computing architecture for wireless sensors and actuator networks. In 18th International Conference on Advanced Communication Technology (ICACT), IEEE, 210–213.

    Google Scholar 

  17. Aazam, M., and E.N. Huh. 2015. Fog computing micro datacenter based dynamic resource estimation and pricing model for iot. In IEEE 29th International Conference on Advanced Information Networking and Applications. (March 2015), 687–694.

    Google Scholar 

  18. Jalali, F., K. Hinton, R. Ayre, T. Alpcan, and R.S. Tucker. 2016. Fog computing may help to save energy in cloud computing. IEEE Journal on Selected Areas in Communications 34(5): 1728–1739.

    Google Scholar 

  19. Zhu, J., D.S. Chan, M.S. Prabhu, P. Natarajan, H. Hu, F. Bonomi. 2013. Improving web sites performance using edge servers in fog computing architecture. In Service Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium on, (March 2013), 320–323.

    Google Scholar 

  20. Zeng, D., L. Gu, S. Guo, Z. Cheng, and S. Yu. 2016. Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Transactions on Computers PP(99): 1–1.

    Google Scholar 

  21. Hong, K., D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe. 2013. Mobile fog: A programming model for large-scale applications on the internet of things. In Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing, ACM, 15–20.

    Google Scholar 

  22. Nazmudeen, M.S.H., A.T. Wan, and S.M. Buhari. 2016. Improved throughput for power line communication (plc) for smart meters using fog computing based data aggregation approach. In IEEE International Smart Cities Conference (ISC2), (Sept 2016), 1–4.

    Google Scholar 

  23. Aazam, M., and E.N. Huh. 2014. Fog computing and smart gateway based communication for cloud of things. In Future Internet of Things and Cloud (FiCloud), International Conference on IEEE (2014), 464–470.

    Google Scholar 

  24. Cirani, S., G. Ferrari, N. Iotti, and M. Picone. 2015. The iot hub: A fog node for seamless management of heterogeneous connected smart objects. In 12th Annual IEEE International Conference on Sensing, Communication, and Networking-Workshops (SECON Workshops), IEEE (2015), 1–6.

    Google Scholar 

  25. Dsouza, C., G.J. Ahn, and M. Taguinod.2014. Policy-driven security management for fog computing: Preliminary framework and a case study. In: IEEE 15th International Conference on Information Reuse and Integration (IRI), (Aug 2014), 16–23.

    Google Scholar 

  26. Cardellini, V., V. Grassi, F.L. Presti, and M. Nardelli. 2015. On qos-aware scheduling of data stream applications over fog computing infrastructures. In IEEE Symposium on Computers and Communication (ISCC), (July 2015), 271–276.

    Google Scholar 

  27. Yan, S., M. Peng, and W. Wang. 2016. User access mode selection in fog computing based radio access networks. In IEEE International Conference on Communications (ICC),(May 2016), 1–6.

    Google Scholar 

  28. Gu, L., D. Zeng, S. Guo, A. Barnawi, and Y. Xiang. 2015. Cost-efficient resource management in fog computing supported medical cps. IEEE Transactions on Emerging Topics in Computing PP(99): 1–1.

    Google Scholar 

  29. Truong, N.B., G.M. Lee, and Y. Ghamri-Doudane. 2015. Software defined networking-based vehicular adhoc network with fog computing. In IFIP/IEEE International Symposium on Integrated Network Management (IM),(May 2015), 1202–1207.

    Google Scholar 

  30. Oueis, J., E.C. Strinati, S. Sardellitti, and S.Barbarossa. 2015. Small cell clustering for efficient distributed fog computing: A multi-user case. In Vehicular Technology Conference (VTC Fall), IEEE 82nd. (Sept 2015), 1–5.

    Google Scholar 

  31. Hou, X., Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen. 2016. Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology 65(6): 3860–3873.

    Google Scholar 

  32. Ye, D., M. Wu, S. Tang, and R. Yu. 2016. Scalable fog computing with service offloading in bus networks. In IEEE 3rd international Conference on Cyber Security and Cloud Computing (CSCloud), (June 2016), 247–251.

    Google Scholar 

  33. Oueis, J., E.C. Strinati, and S. Barbarossa. 2015. The fog balancing: Load distribution for small cell cloud computing. In IEEE 81st Vehicular Technology Conference (VTC spring), (May 2015), 1–6.

    Google Scholar 

  34. Faruque, M.A.A., and K. Vatanparvar. 2016. Energy management-as-a-service over fog computing platform. IEEE Internet of Things Journal 3(2): 161–169.

    Google Scholar 

  35. Shi, H., N. Chen, and R. Deters. 2015. Combining mobile and fog computing: Using coap to link mobile device clouds with fog computing. In IEEE International Conference on Data Science and Data Intensive Systems, (Dec 2015), 564–571.

    Google Scholar 

  36. Giang, N.K., M. Blackstock, R. Lea, and V.C.M.Leung. 2015. Developing iot applications in the fog: A distributed dataflow approach. In 5th International Conference on the Internet of Things (IOT), (Oct 2015), 155–162.

    Google Scholar 

  37. Intharawijitr, K., K. Iida, and H. Koga. 2016. Analysis of fog model considering computing and communication latency in 5g cellular networks. In IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), (March 2016), 1–4.

    Google Scholar 

  38. Peng, M., S. Yan, K. Zhang, and C. Wang. 2016. Fog-computing-based radio access networks: Issues and challenges. IEEE Network 30(4): 46–53.

    Google Scholar 

  39. Hassan, M.A., M. Xiao, Q. Wei, and S.Chen. 2015. Help your mobile applications with fog computing. In 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops), (June 2015), 1–6.

    Google Scholar 

  40. Zhang, W., B. Lin, Q. Yin, and T. Zhao. 2016. Infrastructure deployment and optimization of fog network based on microdc and lrpon integration. Peer-to-Peer Networking and Applications 1–13.

    Google Scholar 

  41. Deng, R., R. Lu, C. Lai, T.H. Luan, and H. Liang. 2016. Optimal workload allocation in fog-cloud computing towards balanced delay and power consumption. IEEE Internet of Things Journal PP(99): 1–1.

    Google Scholar 

  42. Do, C.T., N.H. Tran, C. Pham, M.G.R. Alam, J.H. Son, and C.S. Hong. 2015. A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing. In International Conference on Information Networking (ICOIN), (Jan 2015), 324–329.

    Google Scholar 

  43. Aazam, M., M. St-Hilaire, C.H. Lung, and I. Lambadaris. 2016. Pre-fog: Iot trace based probabilistic resource estimation at fog. In 13th IEEE Annual Consumer Communications Networking Conference (CCNC), (Jan 2016), 12–17.

    Google Scholar 

  44. Datta, S.K., C. Bonnet, and J. Haerri. 2015. Fog computing architecture to enable consumer centric internet of things services. In International Symposium on Consumer Electronics (ISCE), (June 2015), 1–2.

    Google Scholar 

  45. Aazam, M., M. St-Hilaire, C.H. Lung, and I. Lambadaris. 2016. Mefore: Qoe based resource estimation at fog to enhance qos in iot. In 23rd International Conference on Telecommunications (ICT), (May 2016), 1–5.

    Google Scholar 

  46. Gazis, V., A. Leonardi, K. Mathioudakis, K. Sasloglou, P. Kikiras, and R. Sudhaakar. 2015. Components of fog computing in an industrial internet of things context. In 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops), (June 2015) 1–6.

    Google Scholar 

  47. Gupta, H., A.V. Dastjerdi, S.K. Ghosh, and R. Buyya. 2016. ifogsim: A toolkit for modeling and simulation of resource management techniques in internet of things, edge and fog computing environments. arXiv preprint arXiv:1606.02007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redowan Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mahmud, R., Kotagiri, R., Buyya, R. (2018). Fog Computing: A Taxonomy, Survey and Future Directions. In: Di Martino, B., Li, KC., Yang, L., Esposito, A. (eds) Internet of Everything. Internet of Things. Springer, Singapore. https://doi.org/10.1007/978-981-10-5861-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5861-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5860-8

  • Online ISBN: 978-981-10-5861-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics