Advertisement

Repair and Strengthening of Traditional Timber Roof and Floor Structures

  • Jorge M. Branco
  • Thierry Descamps
  • Eleftheria Tsakanika
Chapter
Part of the Building Pathology and Rehabilitation book series (BUILDING, volume 9)

Abstract

In many countries, traditional buildings comprise timber roof and floor structures. Most of these structures are degraded from different causes and need to be repaired or strengthened to ensure current and/or to fulfil the requirements of a new use of the building. Current knowledge assumes the need to preserve and to protect existing timber structural systems as a cultural value, with important advantages to the overall behaviour of the building. This growing sensibility towards the preservation and maintenance of heritage buildings has led researchers to study different repair and strengthening solutions. In the case of timber roof structures, this strengthening in many cases involves the connections between the roof structural members. Joint strengthening can be done with different methods, traditional or modern ones, using well-chosen materials, simple techniques or more sophisticated ones: from simple replacement or addition of new fasteners, to the use of timber or metal elements, glued composites, or even full injection with fluid adhesives. Each solution has advantages and disadvantages concerning conservation philosophy, architecture, aesthetics, construction issues and moreover unique consequences in engineering terms for the joint final strength, stiffness and ductility. All the above have to be evaluated in order the proper intervention to be chosen for each case. The main problem of existing timber floors is their low stiffness, which results in high bending deformations and vibrations under service loads. Permanent deflection due to creep can also reach critical values. Moreover, in earthquake prone areas, if seismic resistance has to be assured in existing masonry buildings, both roof and floor diaphragm behaviour must be achieved. This chapter aims to present a state-of-the-art review mainly on strengthening solutions for timber roof and floor structures, focusing on the most promising techniques taken into account the level of intrusion and reversibility. “Dry” interventions, based on timber or timber based elements will be highlighted.

Keywords

Traditional timber roofs and floors Timber elements Timber joints/connections Repair Strengthening Timber diaphragms In-plane behaviour of timber floor and roof 

References

  1. 1.
    Venice Charter. Second international congress of architects and technicians of historical monuments, Venice, May 25–31, 1964.Google Scholar
  2. 2.
    Krakow Charter. International conference on conservation Krakow, Krakow; 2000.Google Scholar
  3. 3.
    ISCARSAH ICOMOS Committie. Principles for the analysis, conservation and structural restoration of architectural heritage 2003. IIWC ICOMOS Committie: Principles for the preservation of Historic Timber Strucures; 1999.Google Scholar
  4. 4.
    UNI Ente Nazionale Italiano di Unificazione. UNI 11138: cultural heritage—wooden artefacts—criteria for the preliminary evaluation, the design and the execution of works, Milano, Italy; 2004.Google Scholar
  5. 5.
    Kasal B, Tannert T. In situ assessment of structural timber. RILEM State-of-the-Art Reports, vol. 7, 129 p; 2011.Google Scholar
  6. 6.
    Cruz H, Yeomans D, Tsakanika E, Macchioni N, Jorissen A, Touza M, Mannucci M, Lourenço PB. Guidelines for the on-site assessment of historic timber structures. Int J Archit Herit Conserv Anal Restor. 2015;9(3):277–89.CrossRefGoogle Scholar
  7. 7.
    Gasparini DA, da Porto F. Prestressing of 19th century wood and iron truss bridges in the U.S. In: Huerta S, editor. Proceedings of the first international congress on construction history, Madrid; 2003. p. 978–86.Google Scholar
  8. 8.
    Tampone G. Il restauro delle strutture di legno. Milano: Hoepli; 1996. p. 321.Google Scholar
  9. 9.
    Paolini L, Messina C, Marradi AM. Il restauro della copertura del teatro Chiabrera a Savona, in “Legno e restauro”, a cura di G. Tampone, Firenze: Messaggerie toscane; 1989.Google Scholar
  10. 10.
    Song J-K, Kim S-Y, Yang K-H, Han S-A. Flexural behavior of post-tensioned glued-laminated timber with wire rope. Seoul, s.n.; 2007.Google Scholar
  11. 11.
    Gesualdo FA, Rezende RB, Cunha TA. Numerical and experimental evaluation of a double inverted trussed. Constr Build Mater. 2014;50:736–43.CrossRefGoogle Scholar
  12. 12.
    Al-hayek HWH. Flexural behaviour of post-tensioned timber beams. Winnipeg: University of Manitoba; 2014.Google Scholar
  13. 13.
    Tsakanika E. Methodology concerning the restoration of historical buildings. Case studies: the Turkish Mansion and the Hagi Mehmet Aga Mosque in Rhodes. In: Proceedings of international conference of the IIWC “Conservation of Historic Wooden Structures”, Florence, vol. 2; 2005. p. 194–203.Google Scholar
  14. 14.
    Tsakanika E. Byzantine and post-byzantine historical timber roofs in Greece. Typical failures, misunderstanding of their structural behaviour, restoration proposals. In: Proceedings of XVI international conference and symposium of the IIWC “From Material to Structure”, Florence; 2007. http://www.icomos.org/iiwc/2007.htm.
  15. 15.
    Bertolini C, Touliatos P, Miltiadou N, Delinikolas N, Crivellaro A, Marzi T, Tsakanika E, Pignatelli O, Biglione GG. The timber roof of Hagia Paraskevi Basilica in Halkida, Greece: multi-disciplinary methodological approach for the understanding of the structural behaviour. Analysis and diagnosis. In: Proceedings of XVI international conference and symposium of the IIWC “From Material to Structure”, Florence; 2007. http://www.icomos.org/iiwc/2007.htm.
  16. 16.
    Tsakanika-Theohari E, Mouzakis H. A post-Byzantine mansion in Athens. The restoration project of the timber structural elements. In: Proceedings of 11th world conference on timber engineering, (WCTE 2010), vol. 2. Riva del Garda, Trentino, Italy; 2010. p. 1380–9.Google Scholar
  17. 17.
    Feio AO, Lourenço PB, Machado JS. Testing and modeling of a traditional timber mortise and tenon joint. Mater Struct. 2014;47:213–25.CrossRefGoogle Scholar
  18. 18.
    Menichelli C, Adami A, Balletti C, Bertolini Cestari C, Bettiol G, Biglione G et al. Le strutture lignee dell’arsenale di Venezia. Sudi et restauri. In: Proceedings of XXV Convegno Internazionale Scienza et Beni Culturali – Conservare e restaure il legno, Bressanone, Italy (in Italian); 2009.Google Scholar
  19. 19.
    Bertolini Cestari C, Invenizzi S, Marzi T, Spano A. Numerical survey, analysis and assessment of past interventions on historical timber structures: the roof of Valentino Castle. In: Proceedings of international conference on structural health assessment of timber structures, SHATIS’15, Wroclaw (Polond), vol. 2; 2015.Google Scholar
  20. 20.
    Branco JM, Cruz PJS, Piazza M. Experimental analysis of laterally loaded nailed timber-to-concrete connections. Constr Build Mater. 2009;23(1):400–10.CrossRefGoogle Scholar
  21. 21.
    Sanabra M, Capellà J. The four ages of early prestressed concrete structures. PCI J. 2014;59(4):93–121.CrossRefGoogle Scholar
  22. 22.
    Segurado JES. Trabalhos de carpintaria civil. Livraria Bertrand, Lisboa: Biblioteca de Instrução Profissional; 1942.Google Scholar
  23. 23.
    Teixeira JJL. Descrição do sistema construtivo da casa burguesa do Porto entre os séculos XVII e XIX. Contributo para uma história da construção arquitectónica em Portugal, Provas de aptidão pedagógica e capacidade científica. FAUP, Porto; 2004.Google Scholar
  24. 24.
    Barbaro D. I dieci libri dell’architettura di M. Vitruvio (anastatic printing from the original of 1567). Milano: Il Polifilo; 1997.Google Scholar
  25. 25.
    Portoghesi P, Orlandi G, Alberti LB. De re aedificatoria. Milano: Il Polifilo; 1966.Google Scholar
  26. 26.
    Arriaga F, Peraza F, Esteban M, Bobadila I, Garcia F. Intervención en estructuras de madera. AITIM: Espanha; 2002. p. 512.Google Scholar
  27. 27.
    EN 1995-1-1:2004. Eurocode 5. Design of timber structures. Part 1-1: general—common rules and rules for buildings. European Committee for Standardization, Brussels.Google Scholar
  28. 28.
    ENV 1995-2:1997. Eurocode 5: Design of timber structures. Part 2: bridges. European Committee for Standardization, Brussels.Google Scholar
  29. 29.
    EN 1995-2:2008. Eurocode 5: Design of timber structures. Part 2: bridges. European Committee for Standardization, Brussels.Google Scholar
  30. 30.
    CNR-DT 206/2007. Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture di Legno. Consiglio Nazionale delle Ricerche, Roma.Google Scholar
  31. 31.
    CNR-DT 201/2005. Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures. Italian National Research Council, Rome; 2007.Google Scholar
  32. 32.
    Branco JM, Tomasi R. Analysis and strengthening of timber floors and roofs. In: Costa A, Miranda Guedes J, Varum H, editors. Structural rehabilitation of old buildings. Berlin: Springer; 2013. P. 235–58. ISBN: 978-3-642-39685-4. doi: 10.1007/978-3-642-39686-1.
  33. 33.
    Turrini G, Piazza M. Una tecnica di recupero dei solai in legno. Recuperare. 1983;5:396–407.Google Scholar
  34. 34.
    Ronca P, Gelfi P, Giuriani E. Behavior of a wood–concrete composite beam under cyclic and long term loads. In: Proceedings of the international conference on structural repair and maintenance of historic buildings, Seville, Spain; 1991. p. 263–75.Google Scholar
  35. 35.
    Natterer J, Hamm J, Favre P. Composite wood–concrete floors for multi-story buildings. In: Proceedings of the 4th international wood engineering conference, New Orleans, Omnipress, Madison, Wisconsin, USA, vol. 3; 1996. p. 3431–5.Google Scholar
  36. 36.
    Gelfi P, Giuriani E, Marini A. Stud shear connection design for composite concrete slab and wood beams. J Struct Eng. 2002;128(12):1544–50.CrossRefGoogle Scholar
  37. 37.
    Giuriani E. L’organizzazione degli impalcati per gli edifici storici. L’edilizia. 2004;134:30–43.Google Scholar
  38. 38.
    Gutkowski R, Brown K, Shigidi A, Natterer J. Laboratory tests of composite wood–concrete beams. Constr Build Mater. 2008;22(6):1059–66.CrossRefGoogle Scholar
  39. 39.
    Bathon L, Graf M. A continuous wood–concrete-composite system. In: Proceedings of world conference of timber engineering, Whistler, BC; 2000.Google Scholar
  40. 40.
    Clouston P, Bathon L, Schreyer A. Shear and bending performance of a novel wood-concrete composite system. J Struct Eng. 2005;131(9):1404–12.CrossRefGoogle Scholar
  41. 41.
    Kreuzinger H. Platten, Scheiben und Schalen: Ein Berechnungsmodell für gängige Statikprogramme. bauen mit holz. 1999;1:34–9.Google Scholar
  42. 42.
    Deutsches Institut für Normung. DIN 1052: Entwurf, Berechnung und Bemessung Deutsches Institut für Normung: DIN 1052. Berechnung und Bemessung: Entwurf; 2004.Google Scholar
  43. 43.
    Kuhlmann U, Michelfelder B. Optimised design of grooves in timber-concrete composite slabs. In: Proceedings of the 10th world conference on timber engineering, Portland, Oregan, USA; 2006.Google Scholar
  44. 44.
    Modena C, Valluzzi MR, Garbin E, da Porto F. A strengthening technique for timber floors using traditional materials. In: 4th structural analysis of historical constructions, Proc. Intern. Symp., Padova, Italy. Balkema, Rotterdam; 2004. p. 911–21.Google Scholar
  45. 45.
    Piazza M, Tomasi R, Baldessari C, Acler E. Behaviour of refurbished timber floors characterized by different in-plane stiffness. In: Structural analysis of historic construction: preserving safety and significance. VI international conference on structural analysis of historic construction, vol. 2. London, Bath: Taylor & Francis; 2008. p. 843–50.Google Scholar
  46. 46.
    Valluzzi M, Garbin E, Benetta MD, Modena C. Experimental assessment and modelling of in-plane behavior of timber floors. SAHC 2008. Structural analysis of historical constructions. Bath, UK; 2008.Google Scholar
  47. 47.
    Angeli A, Piazza M, Riggio M, Tomasi R. Refurbishment of traditional timber floors by means of wood-wood composite structures assembled with inclined screw connectors. In: 11th world conference on timber engineering—WCTE 2010. Riva del Guarda, Trentino, Italy; 2010.Google Scholar
  48. 48.
    Tomasi R, Baldessari C, Piazza M. The refurbishment of existing timber floors: characterization of the in-plane behaviour. In: Prohitech Conference, 21–24 June, Rome; 2009.Google Scholar
  49. 49.
    Branco JM, Kekeliak M, Lourenço PB. In-plane stiffness of timber floors strengthened with CLT. Eur J Wood Wood Prod. 2015;73(3):313–23. doi: 10.1007/s00107-015-0892-2.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jorge M. Branco
    • 1
  • Thierry Descamps
    • 2
  • Eleftheria Tsakanika
    • 3
  1. 1.ISISE, Civil Engineering Department, School of EngineeringUniversity of MinhoGuimarãesPortugal
  2. 2.URBAINE, Department of Mechanical and Civil EngineeringUniversity of MonsMonsBelgium
  3. 3.National Technical University of AthensAthensGreece

Personalised recommendations