Advertisement

Seismic Retrofit of Adobe Constructions

  • Julio Vargas-Neumann
  • Cristina Oliveira
  • Dora Silveira
  • Humberto Varum
Chapter
Part of the Building Pathology and Rehabilitation book series (BUILDING, volume 9)

Abstract

Earthen construction has been widely used since ancient times. Currently, this type of construction is used by approximately one third of the world population. In comparison to other, more modern building materials, such as brick masonry, reinforced concrete, and steel, earth is costless and primarily accessible. For these reasons, it is massively used by no-income or low-income families, in developing countries and in communities where the mentioned industrial materials were never incorporated, frequently without adequate attention being paid to structural safety and reinforcement issues. Moreover, buildings are generally constructed and rehabilitated by non-specialized staff, with empirical knowledge passed through generations, lacking information and understanding of their structural behaviour. The seismic behaviour of earthen structures is typically characterized by fragile and sudden failure, because earth is a brittle material with very low tensile strength. Thus, earthen constructions and, in particular, adobe constructions, if not adequately designed and strengthened may perform very poorly when subjected to seismic loads. There are, in fact, various examples of recent earthquakes that caused severe damage to earthen buildings. The study of the structural behaviour of earthen constructions and the development of effective strengthening solutions are fundamental. In the present chapter, an introduction to earthen construction, including a brief description of its use throughout the world and main vulnerabilities, is presented. The structural behaviour of adobe construction is explained, in particular when subjected to seismic demands. Different repair and strengthening solutions are presented, together with various experimental studies conducted by different authors. A short review of the existing standards and codes that address the seismic design of earthen buildings is also presented. Finally, a brief reference is made to the numerical modelling of adobe construction.

Keywords

Adobe construction Seismic behaviour Seismic retrofit Structural safety 

Notes

Acknowledgements

This research was financially supported by Project POCI-01-0145-FEDER-007457—CONSTRUCT—Institute of R&D in Structures and Construction, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a Ciência e a Tecnologia (FCT). This work was also carried out within the framework of the project POCI-01-0145-FEDER-016737 (PTDC/ECM-EST/2777/2014), financed by FEDER funds through Programa Operacional Factores de Competitividade (COMPETE) and by national funds through Fundação para a Ciência e a Tecnologia (FCT). The funding provided is kindly acknowledged.

The authors would also like to acknowledge the contribution of:

University of Aveiro;

Laboratory of Earthquake and Structural Engineering (LESE), Faculty of Engineering of the University of Porto;

Pontifical Catholic University of Peru.

References

  1. 1.
    Gandreau D, Delboy L. World heritage inventory of earthen architecture—2012 WHEAP, World Heritage Earthen Architecture Programme. Grenoble: CRAterre ENSAG; 2012.Google Scholar
  2. 2.
    Houben H, Guillaud H. Earth construction: a comprehensive guide. London: ITDG Publishing; 1994.Google Scholar
  3. 3.
    Minke G. Building with earth: design and technology of a sustainable architecture. Basel: Birkhäuser-Publishers for Architecture; 2006.Google Scholar
  4. 4.
    Correia M, Dipasquale L, Mecca S. Terra Europae: earthen architecture in the European Union. Pisa: Edizioni ETS; 2011.Google Scholar
  5. 5.
    Rigassi V. Compressed earth blocks: manual of production, vol. 1. Vilefontaine: CRATerre-EAG; 1995.Google Scholar
  6. 6.
    Tolles E, Krawinkler H. Seismic studies on small-scale models of adobe houses. Report No. 91. Stanford, California; 1990.Google Scholar
  7. 7.
    Delgado M, Guerrero I. The selection of soils for unstabilised earth buildings: a normative review. J Constr Build Mater. 2007;21:237–51.CrossRefGoogle Scholar
  8. 8.
    UNESCO. World heritage list. Paris: United Nations Educational Scientific and Cultural Organization (UNESCO); 2016. http://whc.unesco.org/en/list/.
  9. 9.
    Meli R. Experiencias en México sobre reducción de vulnerabilidad sísmica de construcciones de adobe. SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru; 2005.Google Scholar
  10. 10.
    Fratini F, Pecchioni E, Rovero L, Tonietti U. The earth in the architecture of the historical centre of Lamezia Terme (Italy): characterization for restoration. Appl Clay Sci. 2011;53(3):509–16.CrossRefGoogle Scholar
  11. 11.
    Silveira D, Varum H, Costa A, Martins T, Pereira H, Almeida J. Mechanical properties of adobe bricks in ancient constructions. Constr Build Mater. 2012;28(1):36–44.CrossRefGoogle Scholar
  12. 12.
    Silveira D, Varum H, Costa A. Influence of the testing procedures in the mechanical characterization of adobe bricks. Constr Build Mater. 2013;40:719–28.CrossRefGoogle Scholar
  13. 13.
    Ottazzi G, Vargas J. Investigación comparativa sobre la resistencia del adobe. Proyecto Cooperativo Universidad Nacional Autónoma de México (UNAM) - Pontificia Universidad Católica del Perú (PUCP). IV Congreso Nacional de Ingeniería Civil, Chiclayo, Peru; 1982.Google Scholar
  14. 14.
    Vargas J, Bariola J, Blondet M. Seismic strength of adobe masonry, summary of a research project sponsored by the US Agency for International Development (AID). Peru: Lima; 1984.Google Scholar
  15. 15.
    Vargas J, Bariola J, Blondet M, Mehta PK. Seismic strength of adobe masonry. Mater Struct. 1986;19(112):253–8.CrossRefGoogle Scholar
  16. 16.
    Vargas J, Blondet M. Repairing structural cracks in historic earthen building located in seismic areas. Final report. Agreement PUCP-Getty Conservation Institute; 2007.Google Scholar
  17. 17.
    Webster F, Tolles E. Earthquake damage to historic and older adobe buildings during the 1994 Northridge, California Earthquake. In: 12th world conference on earthquake engineering, Auckland, New Zealand; 2000.Google Scholar
  18. 18.
    Memari A, Kauffman A. Review of existing seismic retrofit methodologies for adobe dwellings and introduction of a new concept. In: SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru; 2005.Google Scholar
  19. 19.
    JSCE, Earthquake Engineering Committee. The January 13, 2001 off the coast of El Salvador earthquake. Investigation of damage to civil engineering structures, buildings and dwellings. Tokyo: Japan Society of Civil Engineers (JSCE); 2001.Google Scholar
  20. 20.
    Mahdi T. Behavior of adobe buildings in the 2003 Bam earthquake. In: SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru; 2005.Google Scholar
  21. 21.
    Blondet M. Behavior of earthen buildings during the Pisco earthquake of August 15, 2007. Oakland: Earthquake Engineering Research Institute (EERI); 2008.Google Scholar
  22. 22.
    Elnashai A, Gencturk B, Kwon O-S, Al-Qadi I, Hashash Y, Roesler J, Kim S, Jeong S-H, Dukes J, Valdivia A. The Maule (Chile) earthquake of February 27, 2010: consequence assessment and case studies. MAE Center report no. 10-04. Urbana: Mid-America Earthquake Center; 2010.Google Scholar
  23. 23.
    Gautam D, Rodrigues H, Bhetwal KK, Neupane P, Sanada Y. Common structural and construction deficiencies of Nepalese buildings. Innov Infrastruct Solut. 2016;1(1):1.CrossRefGoogle Scholar
  24. 24.
    Blondet M, Vargas J. Investigación sobre vivienda rural, Convenio con el Ministerio de Vivienda y Construcción, Lima, Peru; 1978.Google Scholar
  25. 25.
    Vargas J, Ottazzi G. Investigaciones en adobe, Publicación DI-81-01. Lima: Pontifical Catholic University of Peru; 1981.Google Scholar
  26. 26.
    Silveira D, Varum H, Costa A, Carvalho J. Mechanical properties and behavior of traditional adobe wall panels of the Aveiro district. J Mater Civ Eng. 2015;27(9):04014253.CrossRefGoogle Scholar
  27. 27.
    Blondet M, Torrealva D, Villa García G, Ginocchio F, Madueño I. Using industrial materials for the construction of safe adobe houses in seismic areas. In: EarthBuild2005: international earth building conference, Sydney, Australia; 2005.Google Scholar
  28. 28.
    Oliveira C, Varum H, Figueiredo A, Silveira D, Costa A. Experimental tests for seismic assessment and strengthening of adobe structures. In: 14ECEE: 14th European conference on earthquake engineering, Ohrid, Republic of Macedonia; 2010.Google Scholar
  29. 29.
    Figueiredo A, Varum H, Costa A, Silveira D, Oliveira C. Seismic retrofitting solution of an adobe masonry wall. Mater Struct. 2013;46(1–2):203–19.CrossRefGoogle Scholar
  30. 30.
    Blondet M, Vargas J, Velasquez J, Tarque N. Experimental study of synthetic mesh reinforcement of historical adobe buildings. In: Structural analysis of historical constructions, New Delhi, India; 2006. p. 715–22.Google Scholar
  31. 31.
    Yamín L, Rodríguez A, Fonseca L, Reyes J, Phillips C. Comportamiento sismico y alternativas de rehabilitación de edificaciones en adobe y tapia pisada con base en modelos a escala reducida ensayados en mesa vibratoria. Revista de lngeniería. 2003;18:175–90.Google Scholar
  32. 32.
    Dowling D, Samali B, Li J. An improved means of reinforcing adobe walls—external vertical reinforcement. In: SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru; 2005.Google Scholar
  33. 33.
    Zavala C, Igarashi L. Propuesta de reforzamiento para muros de adobe. In: SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru; 2005.Google Scholar
  34. 34.
    Wu F, Li G, Li H-N, Jia J-Q. Strength and stress–strain characteristics of traditional adobe block and masonry. Mater Struct. 2013;46(9):1449–57.CrossRefGoogle Scholar
  35. 35.
    Agüero J, Cerón J, Gonzáles JC, Méndez MT. 2015. Análisis estructural de dos muros de adobe con diferente sistema de aparejo. 15° SIACOT: Seminario Iberoamericano de Arquitectura y Construcción con Tierra 2015, Cuenca, Ecuador.Google Scholar
  36. 36.
    Vargas J, Blondet M, Ginocchio F, Villa García G. 35 Años de investigaciones en sismo adobe: la tierra armada. Lima: Pontifical Catholic University of Peru; 2005.Google Scholar
  37. 37.
    Blondet M, Vargas J, Tarque N, Iwaki C. Construcción sismorresistente en tierra: la gran experiencia contemporánea de la Pontificia Universidad Católica del Perú. Informes de la Construcción. 2011;63(523):41–50.CrossRefGoogle Scholar
  38. 38.
    Corazao M, Blondet M. Estudio experimental del comportameniento estructural de las construcciones de adobe frente a solicitaciones sismicas. Lima: Banco Peruano de los Constructores; 1973.Google Scholar
  39. 39.
    Blondet M, Torrealva D, Villa García G, Ginocchio F, Tarque N, Velásquez J. Refuerzo de construcciones de adobe con elementos producidos industrialmente: ensayos de simulación sísmica. Proyecto DAI 3088 - Informe Final. Lima: Pontifical Catholic University of Peru; 2006.Google Scholar
  40. 40.
    Torrealva D, Acero J. Reinforcing adobe buildings with exterior compatible mesh. The final solution against the seismic vulnerability? In: SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic areas, Lima, Peru; 2005.Google Scholar
  41. 41.
    Torrealva D, Vargas J, Blondet M. Earthquake resistant design criteria and testing of adobe buildings at Pontificia Universidad Católica del Perú. In: Proceedings of the Getty Seismic Adobe Project 2006 Colloquium. Los Angeles: The Getty Conservation Institute; 2009. p. 3–10.Google Scholar
  42. 42.
    Blondet M, Vargas J, Sosa C, Soto J. Using mud injection and an external rope mesh to reinforce historical earthen buildings located in seismic areas. In: SAHC2014: 9th international conference on structural analysis of historical constructions, Mexico City, Mexico; 2014.Google Scholar
  43. 43.
    Blondet M, Vargas J, Tarque N, Soto J, Sosa C, Sarmiento J. Refuerzo sísmico de mallas de sogas sintéticas para construcciones de adobe. 15º SIACOT: Seminario Iberoamericano de Arquitectura y Construcción con Tierra, Cuenca, Ecuador; 2015.Google Scholar
  44. 44.
    Tolles E, Kimbro E, Webster F, Ginell W. Seismic stabilization of historic adobe structures. Final report of the Getty Seismic Adobe Project. Los Angeles: The Getty Conservation Institute; 2000.Google Scholar
  45. 45.
    Tolles E. Getty Seismic Adobe Project research and testing program. In: Proceedings of the Getty Seismic Adobe Project 2006 colloquium. Los Angeles: The Getty Conservation Institute; 2009. p. 34–41.Google Scholar
  46. 46.
    Cancino C, Macdonald S, Lardinois S, D’Ayala D, Fonseca C, Torrealva D, Vicente E. The Seismic Retrofitting Project: methodology for seismic retrofitting of historic earthen sites after the 2007 earthquake. In: Terra 2012: 11th international conference on the study and conservation of earthen architecture heritage, Lima, Peru; 2012.Google Scholar
  47. 47.
    Vera R, Miranda S. Reparación de muros de adobe con el uso de mallas sintéticas. In: SismoAdobe2005: international seminar on architecture, construction and conservation of earthen buildings in seismic Areas, Lima, Peru; 2005.Google Scholar
  48. 48.
    Costa A, Varum H, Pereira H, Rodrigues H, Vicente R, Arêde A, Costa A. Avaliação experimental do comportamento fora do plano de paredes de alvenaria de adobe. In: 5th seminar of earth architecture in Portugal, Aveiro, Portugal; 2007.Google Scholar
  49. 49.
    Varum H, Costa A, Silveira D, Pereira H, Almeida J, Martins T. Structural behaviour assessment and material characterization of traditional adobe constructions. In: AdobeUSA 2007: 4th international adobe conference of the Adobe Association of the Southwest, El Rito, New Mexico; 2007. p. 138–45.Google Scholar
  50. 50.
    Varum H, Figueiredo A, Silveira D, Martins T, Costa A. Outputs from the research developed at the University of Aveiro regarding the mechanical characterization of existing adobe constructions in Portugal. Informes de la Construcción. 2011;63(523):127–42.CrossRefGoogle Scholar
  51. 51.
    Yamín L, Phillips C, Reyes J, Ruiz D. Estudios de vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe y tapia pisada. Apuntes. 2007;20(2):286–303.Google Scholar
  52. 52.
    Dowling D, Samali B. Low-cost and low-tech reinforcement systems for improved earthquake resistance of mud brick buildings. In: Proceedings of the Getty Seismic Adobe Project 2006 colloquium. Los Angeles: The Getty Conservation Institute; 2009. p. 23–33.Google Scholar
  53. 53.
    United Nations: Sendai framework for disaster risk reduction 2015–2030. United Nations International Strategy for Disaster Reduction; 2015. p. 1–25.Google Scholar
  54. 54.
    MVCS. Fichas para la reparación de Viviendas de Adobe. Lima: Ministerio de Vivienda, Construcción y Saneamiento del Perú (MVCS); 2014.Google Scholar
  55. 55.
    Zegarra L, Quiun D, San Bartolomé A, Giesecke A. Reforzamiento de viviendas de adobe existentes. Primera parte: Ensayos sísmicos de muros U. In: XI national congress of civil engineering, Lima, Peru; 1997.Google Scholar
  56. 56.
    Zegarra L, Quiun D, San Bartolomé A, Giesecke A. Reforzamiento de viviendas de adobe existentes. Segunda parte: Ensayos sísmicos de módulos. In: XI national congress of civil engineering, Lima, Peru; 1997.Google Scholar
  57. 57.
    Varum H, Tarque N, Silveira D, Camata G, Lobo B, Blondet M, Figueiredo A, Rafi M, Oliveira C, Costa A. Structural behaviour and retrofitting of adobe masonry buildings. In: Costa A, Guedes JM, Varum H. editors. Structural rehabilitation of old buildings—building pathology and rehabilitation, vol. 2.  Berlin: Springer; 2014. p. 37–75.Google Scholar
  58. 58.
    Charleson A. Seismic strengthening of earthen houses using straps cut from used car tires: a construction guide. Oakland: Earthquake Engineering Research Institute (EERI); 2011.Google Scholar
  59. 59.
    Charleson A, Blondet M. Seismic reinforcement for adobe houses with straps from used car tires. Earthquaque Spectra. 2012;28(2):511–30.CrossRefGoogle Scholar
  60. 60.
    SENCICO: Norma Técnica Edificación NTE E 0.80 Adobe. Reglamento Nacional de Construcciones. Lima: Servicio Nacional de Capacitación para la Industria de la Construcción; 2000.Google Scholar
  61. 61.
    SAZ. Standards Association Zimbabwe Standard 724:2001: standard code of practice for rammed earth structures. Harare: Standards Association of Zimbabwe; 2001.Google Scholar
  62. 62.
    MINVU. Proyecto de intervención estructural de construcciones de tierra - NTM 002. Santiago: Ministerio de Vivienda y Urbanismo; 2013.Google Scholar
  63. 63.
    SNZ. NZS 4297:1998 Engineering design of earth buildings. Wellington: Standards New Zealand (SNZ); 1998.Google Scholar
  64. 64.
    SNZ. NZS 4298:1998 materials and workmanship for earth buildings. Wellington: Standards New Zealand (SNZ); 1998.Google Scholar
  65. 65.
    SNZ. NZS 4299:1998 earth buildings not requiring specific design. Wellington: Standards New Zealand (SNZ); 1998.Google Scholar
  66. 66.
    MET, MHUPV: Reglement Parasismique des Constructions en Terre - RPCTerre 2011. Kingdom of Morocco: Ministère de l’équipement et du transport and Ministère de l’habitat, de l’urbanisme, et de la politique de la ville; 2011.Google Scholar
  67. 67.
    BIS. IS 13827:1993—Indian Standard: improving earthquake resistance of earthen buildings—guidelines. New Delhi: Bureau of Indian Standards; 1993.Google Scholar
  68. 68.
    Tarque N, Camata G, Espacone E, Varum H, Blondet M. Numerical modelling of in-plane behaviour of adobe walls. In: Sismica 2010: 8th national conference on seismology and earthquake engineering, Aveiro, Portugal; 2010.Google Scholar
  69. 69.
    Lourenço P. Analysis of masonry structures with interface elements: theory and applications. Delft: Delft University of Technology; 1994.Google Scholar
  70. 70.
    Banadaki AD, Ghannad MA, Bakhshi A, Lotfalipour M. A Numerical study on seismic behavior of a typical rural house of Iran. In: 14WCEE: 14th world conference on earthquake engineering, Beijing, China; 2008.Google Scholar
  71. 71.
    Page AW. Finite element model for masonry. J Struct Eng. 1978;104(8):1267–85.Google Scholar
  72. 72.
    Lotfi HR, Shing PB. Interface model applied to fracture of masonry structures. J Struct Eng. 1994;120(1):63–80.CrossRefGoogle Scholar
  73. 73.
    Lourenço PB, Rots JG. Multisurface interface model for analysis of masonry structures. J Eng Mech. 1997;123(7):660–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Julio Vargas-Neumann
    • 1
  • Cristina Oliveira
    • 2
    • 3
  • Dora Silveira
    • 4
  • Humberto Varum
    • 4
  1. 1.Civil Engineering Section, Department of EngineeringPontifical Catholic University of PeruLimaPeru
  2. 2.Barreiro School of TechnologyPolytechnic Institute of SetubalLavradioPortugal
  3. 3.CONSTRUCT-LESE, Faculty of Engineering (FEUP)University of PortoPortoPortugal
  4. 4.CONSTRUCT-LESE, Civil Engineering Department, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations