Strengthening of Masonry Bridges

Chapter
Part of the Building Pathology and Rehabilitation book series (BUILDING, volume 9)

Abstract

The mechanical characteristics of materials and the interaction between the different elements of masonry bridges, typically arched ones, determine their behaviour, performance, structural deficiencies and failure modes. Therefore, it is particularly important to identify relationships between the main structural issues of this bridges’ type and the structural defects most commonly found, in order to allow defining appropriately sustained repair and/or reinforcement intervention programs for existing masonry bridges. This chapter presents a brief systematization of the structural behaviour of masonry arch bridges, with more emphasis on stone made ones, their relation with frequent structural damages and the identification of suitable rehabilitation and strengthening solutions. The structural behaviour of both the bridges and their structural elements is first addressed, focusing on mechanisms of load transmission across the bridge system, deficiencies and possible failure modes which are characteristic of bridges in operating conditions. A brief overview on damage and degradation present in masonry arch bridges is given in this chapter, concerning possible interventions deemed sufficient to ensure or restore the regular operation of these constructions. The main interventions on arch bridges, herein addressed, aim at correcting material and structural deterioration effects, to prevent further deterioration or to restore the existing system without changing bridge genuineness and construction authenticity.

Keywords

Masonry Arch bridges Damage Intervention and stabilization 

Notes

Acknowledgements

Part of this work reports to research financially supported by Project POCI-01-0145-FEDER-007457—CONSTRUCT—Institute of R&D in Structures and Construction, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a Ciência e a Tecnologia (FCT).

References

  1. 1.
    Arch Bridges. In: Melbourne C, editor. Proceedings of the 1st international conference on arch bridges. 3–6 September 1995, Bolton, Thomas Telford, ISBN: 0727720481.Google Scholar
  2. 2.
    Arch Bridges: History, analysis, assessment, maintenance and repair. In: Sinopoli A, editor. Proceedings of the 2nd international arch bridge conference. 6–9 October 1998, Venice: A.A. Balkema, ISBN: 9058090126.Google Scholar
  3. 3.
    Arch’01. In: Abdunur C, editor, Proceedings of the 3th international conference on arch bridges. 19–21 September 2001, Paris, Presses de l’école nationale des ponts et chaussées, ISBN: 2859783471.Google Scholar
  4. 4.
    Arch Bridges IV: advances in assessment, structural design and construction. In: Roca P, Molins C, editors. Proceedings of the 5th international conference on arch bridges. 12–14 September 2004, Barcelona: Center for Numerical Methods in Engineering (CIMNE), ISBN: 8495999633.Google Scholar
  5. 5.
    Arch’07. In: Lourenço PB, Oliveira D, Portela V, editors. Proceedings of the 5th international conference on arch bridges. 12–14 September 2007, Funchal, ISBN: 9728692315.Google Scholar
  6. 6.
    Arch’10. In: Chen, editors. Proceedings of the 6th international conference on arch bridges, 11–13 October 2010, Fuzhou, ISBN: 8371252655.Google Scholar
  7. 7.
    Arch’13. In: Radic J, Kuster M, Savor Z, editors. Proceedings of the 7th international conference on arch bridges, 2–4 October 2013, Trogir–Split, SECON-CSSE, ISBN: 9537621162.Google Scholar
  8. 8.
    Arch 2016: Arch bridges in culture. In: Biliszczuk J, Bien J, Hawryszkow P, Kaminski T, editors. Proceedings of the 8th international conference on arch bridges, 5–7 October 2016, Wroclow, EDITUS, ISBN: 8371252655.Google Scholar
  9. 9.
    Sustainable Bridges: sustainable bridges–assessment for future traffic demands and longer lives. Integrated project in the sixth framework programme on research, technological development and demonstration of the European Union, FP6-PLT-001653. 2007. http://www.sustainablebridges.net.
  10. 10.
    UIC: International union of railways: improving assessment, optimization of maintenance and development of database for masonry arch bridges. 2005. http://orisoft.pmmf.hu/masonry.
  11. 11.
    McKibbins L, Melbourne C, Sawar N, Gaillard C. Masonry arch bridges: condition appraisal and remedial treatment. London: CIRIA; 2006.Google Scholar
  12. 12.
    ICOMOS/ISCARSAH: Recommendations for the analysis, conservation and structural restoration of architectural heritage. 2005. http://www.icomos.org.
  13. 13.
    UIC: Assessment, reliability and maintenance of masonry arch bridges. In: Orban Z, editors. UIC masonry arch bridges study group, state-of-the-art research report. Paris: International Union of Railways, 2004.Google Scholar
  14. 14.
    Ashurst D. An asssessment of repair and strengthening tecniques for brick and stone masonry arch bridges. Report 284. TRL-Transport Research Laboratory, 1992.Google Scholar
  15. 15.
    Page J. A guide to repair and strengthening of masonry arch highway bridges. Report 204. TRL–Transport Research Laboratory, 1996.Google Scholar
  16. 16.
    Gilbert M. The behaviour of masonry arch bridges containing defects, PhD-Thesis, University of Manchester, 1993.Google Scholar
  17. 17.
    DGEMN: Ponte da Lagoncinha. Boletim n.º 87. Boletim da Direcção Geral dos Edifícios e Monumentos Nacionais, MOP, 1957.Google Scholar
  18. 18.
    DGEMN: Ponte sobre o rio Lima. Sistema de Informação para o Património Arquitectónico–IPA.00000424. 1995. http://www.monumentos.pt.
  19. 19.
    Fauchoux G, Abdunur C. Strengthening masonry arch bridges though balckfill replacement by concrete. In: Sinopoli A, editor. Second international conference on arch bridges. Venice: Balkema; 1998.Google Scholar
  20. 20.
    Costa A, Arêde A, Paupério E, Costa C. Ponte da Esmoriz. Relatório de inspeção estrutural, IC142-RVT218-A-NG306 (in Portuguese). IC-Instituto da Construção, FEUP, 2012.Google Scholar
  21. 21.
    Esteves P. Estudo de soluções de reforço em pontes em arco de alvenaria de pedra. Relatório de Seminário do 5º Ano da Licenciatura em Engenharia Civil. 2007. Unpublished internal document (in Portuguese), Instituto Politécnico de Tomar.Google Scholar
  22. 22.
    IEP: Ponte internacional de Segura sobre o rio Erges. Memória descritiva e justificativa do projecto de reabilitação e reforço estrutural. Unpublished internal document (in Portuguese), Instituto de Estradas de Portugal, 2004a.Google Scholar
  23. 23.
    IEP: Projecto de reabilitação e reforço estrutural da ponte do Real. Projecto de execução realizado pela Tecnofisil. Unpublished internal document (in Portuguese), Instituto de Estradas de Portugal, 2004b.Google Scholar
  24. 24.
    EP: Reabilitação e reforço estrutural da ponte da Formigosa. Projecto de execução. Unpublished internal document (in Portuguese), Estradas de Portugal, 2005.Google Scholar
  25. 25.
    IEP Reabilitação/reparação geral da Ponte Pedrinha. Projecto de execução realizado pela BETTAR, SA. Unpublished internal document (in Portuguese), Instituto de Estradas de Portugal, 2001.Google Scholar
  26. 26.
    IEP: Alargamento e reforço da Ponte de Caninhas. Projecto de execução realizado pela Consulplano, S.A.. Unpublished internal document (in Portuguese), Instituto de Estradas de Portugal, 2002.Google Scholar
  27. 27.
    ICERR: Reabilitação da Ponte da Sancheira. Projecto de execução realizado pela BETTAR, SA. Unpublished internal document (in Portuguese), Instituto para a Conservação e Exploração da Rede Rodoviária, 2001.Google Scholar
  28. 28.
    STAP: Relatório final da obra: Ponte de Remondes na EN 216. EP - Estradas de Portugal. Unpublished internal document (in Portuguese), STAP, 2005.Google Scholar
  29. 29.
    Costa A, Guedes J, Costa P. Relatório de Inspecção da Ponte D. Goimil. IC9-RVT28-A-NG36 (in Portuguese). NCREP, IC-Instituto da Construção, FEUP, 2003a.Google Scholar
  30. 30.
    Jurina L, Mazzoleni M. Ponti in muratura: verifiche statiche ed interventi di consolidamento con la tecnica dell’arco armato. Corso di aggiornamento e specializzazione: Ponti e viadotti: ispezioni visive e tecniche di risanamento, Bolzano, 2004.Google Scholar
  31. 31.
    Modena C, Valluzzi MR, da Porto F, Casarin F, Bettio C. Structural upgrading of a brick masonry arch bridge at the lido (Venice). In: Roca P, Molins C, editors. Fourth international conference on arch bridges, Barcelona, 2004.Google Scholar
  32. 32.
    Miri M, Hughes T. Increased load capacity of arch bridges using slab reinforced concrete. Arch Bridges IV, Barcelona, P. R. a. C. M., editors. 2004.Google Scholar
  33. 33.
    Healey T, Counsell J. Widening and strengthening of London’s Kingston Bridge. In: Sinopoli A, editor. Second international conference on arch bridges. Venice: Balkema, 1998.Google Scholar
  34. 34.
    Healey T, Counsell J. Widening and strengthening of Kingston Bridge, London. In: Abdunur C, editors. Third international conference on arch bridges, Paris, 2001.Google Scholar
  35. 35.
    Martínez J, Castillo L. The adaptation of masonry arch bridges. The cerezo bridge experience. In: Roca P, Molins C, editors. Fourth international conference on arch bridges, Barcelona, 2004.Google Scholar
  36. 36.
    Bersche-Rolt Ltd: Masonry reinforcement for arch bridge. Abridged presentation on the bersche-rolt retrofitted system, electronically published at bridge owners forum web site 2004. 2005. http://www.bridgeforum.com/bof/subgroups/masarch/.
  37. 37.
    Garrity S. The Strengthening of single span masonry arch bridge using near-surface reinforcement. In: Abdunur C, editor. Third international conference on arch bridges, Paris, 2001.Google Scholar
  38. 38.
    Foraboschi P. Strengthening of masonry arches with fiber-reinforced polymer strips. J Compos Constr. 2004;8(3):191–202.CrossRefGoogle Scholar
  39. 39.
    Melbourne C, Tomor A. Fatigue performance of composite and radial-pin reiforcement on multi-ring masonry arches. In: Roca P, Molins C, editors. Fourth international conference on arch bridges, Barcelona, 2004.Google Scholar
  40. 40.
    Baratta A, Corbi I. Consolidamento di Strutture Murarie con Fibre di Carbono. XXXII Convegno Nazionale dell’Associazione Italiana per L’Analisi delle Sollecitazioni, Salerno, 2003.Google Scholar
  41. 41.
    Oliveira DV, Lourenço PB. Repair of stone masonry arch bridge. In: Roca P, Molins C, editors. Fourth international conference on arch bridges, Barcelona, 2004.Google Scholar
  42. 42.
    Sumon S. Repair and strengthening of five full scale masonry arch bridges. In: Sinopoli A editor. Second international conference on arch bridges. Venice: Balkema, 1998.Google Scholar
  43. 43.
    Brookes CL, Mullet P. Service load testing, numerical simulation and strengthening masonry arch bridges. Arch Bridges IV, Barcelona, 2004.Google Scholar
  44. 44.
    Gifford and Partners Ltd.: Archtec—verification of structural analysis. Gifford and partners report by brookes CL, Electronically published at Bridge Owners Forum web site 2004. 2004. http://www.bridgeforum.com/bof/subgroups/masarch.
  45. 45.
    Martins F. Rehabilitation of the Minho line’s Areosa and Afife masonry railway bridges. In: Lourenço PB, Roca P, editors. Historical constructions, Guimarães, 2001. p. 159–1164.Google Scholar
  46. 46.
    Guedes J, Paupério E, Costa P. Relatório de Inspecção à Ponte sobre o Rio Sul. OU4-RVT13-A-NG19 (in Portuguese). NCREP. IC-Instituto da Construção, FEUP, 2002.Google Scholar
  47. 47.
    Martins F. Beneficiação da Ponte Ferroviária de Canharda. JPEE - Jornadas Portuguesas de Engenharia de Estruturas (in Portuguese), Lisboa, 2006.Google Scholar
  48. 48.
    Melbourne C, Begimgil M, Gilbert M. The load test to collapse of a 5 m span brickwork arch bridge with tied spandrel walls. In: 1st international conference on arch bridges, Bolton, UK, 1995.Google Scholar
  49. 49.
    Hobbs B, Gilbert M, Molyneaux T. Effects of vehicle impact loading on masonry arch parapets. In: Sinopoli A, editor. Second international conference on arch bridges, Balkema, 1998. p. 281–7.Google Scholar
  50. 50.
    Kiang Hwee T, Patoary MKH. Strengthening of masonry walls against out-of-plane loads using fiber-reinforced polymer reinforcement. J Compos Constr. 2004;8(1):79–87.CrossRefGoogle Scholar
  51. 51.
    Triantafillou TC. Strengthening of masonry structures using epoxy-bonded FRP laminates. J Compos Constr. 1998;2(2):96.CrossRefGoogle Scholar
  52. 52.
    Muszynski LC, Purcell MR. Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast. J Compos Constr. 2003;7(2):98–108.CrossRefGoogle Scholar
  53. 53.
    Appleton J, Silva J. Reabilitação e reforço da ponte de Tavira. Revista Pedra Cal, 2002; 14:12–14 (in Portuguese), GECoRPA - Grémio das Empresas de Conservação e Restauro do Património Arquitectónico.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Cristina Costa
    • 1
    • 2
  • António Arêde
    • 3
  • Aníbal Costa
    • 4
  1. 1.Department of Engineering, Tomar School of TechnologyPolytechnic Institute of TomarTomarPortugal
  2. 2.CONSTRUCT-LESE, Faculty of Engineering (FEUP)University of PortoPortoPortugal
  3. 3.CONSTRUCT-LESE, Civil Engineering Department, Faculty of EngineeringUniversity of PortoPortoPortugal
  4. 4.RISCO, Department of Civil EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations