Comparative Analysis of Feature Extraction Techniques in Motor Imagery EEG Signal Classification

  • Rajdeep ChatterjeeEmail author
  • Tathagata Bandyopadhyay
  • Debarshi Kumar Sanyal
  • Dibyajyoti Guha
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 79)


Hand movement (both physical and imaginary) is linked to the motor cortex region of human brain. This paper aims to compare the left–right hand movement classification performance of different classifiers with respect to different feature extraction techniques. We have deployed four types of feature extraction techniques—wavelet-based energy–entropy, wavelet-based root mean square, power spectral density-based average power, and power spectral density-based band power. Elliptic bandpass filters are used to discard noise and to extract alpha and beta rhythm which corresponds to limb movement. The classifiers used are Bayesian logistic regression, naive Bayes, logistic, variants of support vector machine, and variants of multilayered perceptron. Classifier performance is evaluated using area under ROC curve, recall, precision, and accuracy.


EEG BCI Motor imagery Signal processing Feature extraction Classification ROC Sensitivity Precision 


  1. 1.
    Brain Computer Interface Competition II, Department of Medical Informatics, Institute for Biomedical Engineering, University of Technology Graz (Jan 2004 (accessed June 6, 2015)),
  2. 2.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of eegs and eeg subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering 54(2), 205–211 (2007)CrossRefGoogle Scholar
  3. 3.
    AlZoubi, O., Calvo, R.A., Stevens, R.H.: Classification of eeg for affect recognition: an adaptive approach. In: Australasian Joint Conference on Artificial Intelligence. pp. 52–61. Springer (2009)Google Scholar
  4. 4.
    Andersen, R.A., Musallam, S., Pesaran, B.: Selecting the signals for a brain–machine interface. Current opinion in neurobiology 14(6), 720–726 (2004)CrossRefGoogle Scholar
  5. 5.
    Aris, S.A.M., Taib, M.N.: Brain asymmetry classification in alpha band using knn during relax and non-relax condition. ICCIT (2012)Google Scholar
  6. 6.
    Aris, S.A.M., Taib, M.N., Lias, S., Sulaiman, N.: Feature extraction of eeg signals and classification using fcm. In: Computer Modelling and Simulation (UKSim), 2011 UkSim 13th International Conference on. pp. 54–58. IEEE (2011)Google Scholar
  7. 7.
    Bhattacharyya, S., Khasnobish, A., Chatterjee, S., Konar, A., Tibarewala, D.: Performance analysis of lda, qda and knn algorithms in left-right limb movement classification from eeg data. In: Systems in Medicine and Biology (ICSMB), 2010 International Conference on. pp. 126–131. IEEE (2010)Google Scholar
  8. 8.
    Chatterjee, R., Bandyopadhyay, T.: Eeg based motor imagery classification using svm and mlp. In: Proceedings of the 2nd International Conference on Computational Intelligence and Networks (CINE). pp. 84–89 (2016)Google Scholar
  9. 9.
    Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge university press (2000)Google Scholar
  10. 10.
    Fawcett, T.: An introduction to roc analysis. Pattern recognition letters 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural network design, vol. 20. PWS publishing company Boston (1996)Google Scholar
  12. 12.
    Hernández-Orallo, J., Flach, P., Ferri, C.: A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research 13(Oct), 2813–2869 (2012)Google Scholar
  13. 13.
    Jeannerod, M.: Mental imagery in the motor context. Neuropsychologia 33(11), 1419–1432 (1995)CrossRefGoogle Scholar
  14. 14.
    Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L.: The use of receiver operating characteristic curves in biomedical informatics. Journal of biomedical informatics 38(5), 404–415 (2005)CrossRefGoogle Scholar
  15. 15.
    Li, K., Sun, G., Zhang, B., Wu, S., Wu, G.: Correlation between forehead eeg and sensorimotor area eeg in motor imagery task. In: Dependable, Autonomic and Secure Computing, 2009. DASC’09. Eighth IEEE International Conference on. pp. 430–435. IEEE (2009)Google Scholar
  16. 16.
    Meinel, A., Castaño-Candamil, J.S., Dähne, S., Reis, J., Tangermann, M.: Eeg band power predicts single-trial reaction time in a hand motor task. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). pp. 182–185. IEEE (2015)Google Scholar
  17. 17.
    Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: Eeg feature extraction for classifying emotions using fcm and fkm. International Journal of Computers and Communications 1(2), 21–25 (2007)Google Scholar
  18. 18.
    Murugappan, M., Ramachandran, N., Sazali, Y., et al.: Classification of human emotion from eeg using discrete wavelet transform. Journal of Biomedical Science and Engineering 3(04), 390 (2010)CrossRefGoogle Scholar
  19. 19.
    Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proceedings of the IEEE 89(7), 1123–1134 (2001)CrossRefGoogle Scholar
  20. 20.
    Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation (2011)Google Scholar
  21. 21.
    Proakis, J.: Dg manolakis on digital signal processing (2006)Google Scholar
  22. 22.
    RamaRaju, P., AnogjnaAurora, N., Rao, V.M.: Relevance of wavelet transform for taxonomy of eeg signals. In: Electronics Computer Technology (ICECT), 2011 3rd International Conference on. vol. 3, pp. 466–470. IEEE (2011)Google Scholar
  23. 23.
    Schwartz, A.B., Cui, X.T., Weber, D.J., Moran, D.W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1), 205–220 (2006)CrossRefGoogle Scholar
  24. 24.
    Sulaiman, N., Hau, C.C., Hadi, A.A., Mustafa, M., Jadin, S.: Interpretation of human thought using eeg signals and labview. In: Control System, Computing and Engineering (ICCSCE), 2014 IEEE International Conference on. pp. 384–388. IEEE (2014)Google Scholar
  25. 25.
    Tanner, A., et al.: Automatic seizure detection using a two-dimensional eeg feature space (2011)Google Scholar
  26. 26.
    Valenzi, S., Islam, T., Jurica, P., Cichocki, A.: Individual classification of emotions using eeg. Journal of Biomedical Science and Engineering 7(8), 604 (2014)CrossRefGoogle Scholar
  27. 27.
    Xu, H., Lou, J., Su, R., Zhang, E.: Feature extraction and classification of eeg for imaging left-right hands movement. In: Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. pp. 56–59. IEEE (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rajdeep Chatterjee
    • 1
    Email author
  • Tathagata Bandyopadhyay
    • 1
  • Debarshi Kumar Sanyal
    • 1
  • Dibyajyoti Guha
    • 1
  1. 1.School of Computer EngineeringKIIT UniversityBhubaneswarIndia

Personalised recommendations