Influencing Factors on Understanding Plasma Fluidized Bed

  • Changming Du
  • Rongliang Qiu
  • Jujun Ruan
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


There is a comprehensive introduction about the influencing factors of plasma fluidized bed treatment effect in this chapter, which includes: the resident time, input power, gas flow rate, carrier gas composition, the design of the distributor, gas pressure, temperature, particle size and density, solid mass flow rate. All kinds of influencing factors are analyzed in detail, and the relevant precautions when using plasma fluidized bed are presented.


Influencing factors Plasma fluidized bed 


  1. Arnauld P, Cavadias S, Amouroux J. The interaction of a fluidized bed with a thermal plasma: application to limestone decomposition. In: 7th International symposium on plasma chemistry (Eindhoven, 1985). 1985.Google Scholar
  2. Bromberg L, Cohn D, Rabinovich A, O’Brie C, Hochgreb S. Plasma reforming of methane. Energ Fuel. 1998;12(1):1–18.CrossRefGoogle Scholar
  3. Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983;3(1):97–113.CrossRefGoogle Scholar
  4. Chen GL, Fan SH, Li CL, Gu WC, Feng WR, Zhang GL, et al. A novel atmospheric pressure plasma fluidized bed and its application in mutation of plant seeds. Chinese Phys Lett. 2005;22(8):1980–3.CrossRefGoogle Scholar
  5. Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.CrossRefGoogle Scholar
  6. Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001a;34(18):2798.CrossRefGoogle Scholar
  7. Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001b;34(34):2798.CrossRefGoogle Scholar
  8. Du CM. A plasma fluidized bed for the production of syngas from MSW. China patent 201410844203.9. 2014a.Google Scholar
  9. Du CM. The treatment of VOCs by a plasma fluidized bed. China patent 201410849939.5. 2014b.Google Scholar
  10. Du CM, Tang J, Mo J, Ma DY, Wang J, Wang K, et al. Decontamination of bacteria by gas-liquid gliding arc discharge: application to Escherichia coli. IEEE T Plasma Sci. 2014;42(9):2221–8.CrossRefGoogle Scholar
  11. El-Naas MH, Munz R, Ajersch F. Solid-phase synthesis of calcium carbide in a plasma reactor. Plasma Chem Plasma P. 1998a;18(3):409–27.Google Scholar
  12. El-Naas MH, Munz RJ, Ajersch F. Modelling of a plasma reactor for the synthesis of calcium carbide. CANMetallQuart. 1998b;37(1):67–74.CrossRefGoogle Scholar
  13. Heintze M, Brüser V, Brandl W, Marginean G, Bubert H, Haiber S. Surface functionalisation of carbon nano-fibres in fluidised bed plasma. Surf Coat Tech. 2003;174–175(03):831–4.CrossRefGoogle Scholar
  14. Jung SH, Sang MP, Park SH, Sang DK. Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor. Ind Eng Chem Res. 2004;43(18):5483–8.CrossRefGoogle Scholar
  15. Karches M, Takashima AH, Kanno Y. Development of a circulating fluidized-bed reactor for microwave-activated catalysis. Ind Eng Chem Res. 2004;43(26):8200–6.CrossRefGoogle Scholar
  16. Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke KH. Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P. 2012;32(3):565–82.CrossRefGoogle Scholar
  17. Lee H, Sekiguchi H. Plasma-Catalytic hybrid system using spouted bed with gliding arc discharge. In: 240th American chemical society national meeting (Boston, 2010). 2010.Google Scholar
  18. Li SD, Tian SH, Du CM, He C, Cen CP, Xiong Y. Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chem Eng J. 2010;162(2):546–51.CrossRefGoogle Scholar
  19. Liang M, Chen J, Lin WM, Liu K. Thermodynamics study on solid phase decarbonization of high carbon ferromanganese powder. Ferro-Alloys. 2009.Google Scholar
  20. Liu LX, Rudolph V, Litster JD. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996;88(1):65–70.CrossRefGoogle Scholar
  21. Matsumoto S, Hino M, Kobayashi T. Synthesis of diamond films in a RF induction thermal plasma. Appl Phys Lett. 1987;51(10):737–9.CrossRefGoogle Scholar
  22. Młotek M, Sentek J, Krawczyk K, Schmidt-Szałowski K. The hybrid plasma-catalytic process for non-oxidative methane coupling to ethylene and ethane. Appl Catal A-Gen. 2009;366(2):232–41.CrossRefGoogle Scholar
  23. Nezu A, Morishima T, Watanabe T. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films. 2003;435(1):335–9.CrossRefGoogle Scholar
  24. Pajkic Z, Willert-Porada M. Atmospheric pressure microwave plasma fluidized bed CVD of AlN coatings. Surf Coat Tech. 2009;203(20):3168–72.CrossRefGoogle Scholar
  25. Renzo AD, Maio FPD. Homogeneous and bubbling fluidization regimes in DEM-CFD simulations: hydrodynamic stability of gas and liquid fluidized beds. Chem Eng Sci. 2007;62(1–2):116–30.CrossRefGoogle Scholar
  26. Savinov SY, Lee H, Song HK, Na BK. Decomposition of methane and carbon dioxide in a radio-frequency discharge. Ind Eng Chem Res. 1999;38(7):2540–7.CrossRefGoogle Scholar
  27. Savintsev MI. Diffusion saturation in electrothermal fluidized bed. Met Sci Heat Treat. 1990;32(11):842–5.CrossRefGoogle Scholar
  28. Schmidt-Szalowski K, Krawczyck K, Mlotek M. Properties of a heterogeneous system of solid particles in gliding discharge plasma. In: 10th International symposium on high pressure low temperature plasma chemistry (Hakone X, 2006). 2006.Google Scholar
  29. Schmidt-Szałowski K, Krawczyk K, Młotek M. Catalytic effects of metals on the conversion of methane in gliding discharges. Plasma Process Polym. 2007;4(7–8):728–36.CrossRefGoogle Scholar
  30. Shi TH, Wang ZC, Liu Y, Jia SG, Du CM. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J Hazard Mater. 2009;161(2):900–6.CrossRefGoogle Scholar
  31. Spillmann A, Sonnenfeld A, Rohr PRV. Flowability modification of lactose powder by plasma enhanced chem vapor deposition. Plasma Process Polym. 2007;4(Supplement S1):S16–S20.Google Scholar
  32. Taylor PR, Pirzada SA. Thermal plasma processing of materials: A review. Adv Perform Mater. 1994;1(1):35–50.CrossRefGoogle Scholar
  33. Ua-amnueychai W, Kodama S, Tanthapanichakoon W, Sekiguchi H. Preparation of zinc coated PMMA using solid precursor by gliding arc discharge. Chem Eng J. 2015;278:301–8.CrossRefGoogle Scholar
  34. Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.CrossRefGoogle Scholar
  35. Uhm HS, Na YH, Hong YC, Yun J, Cho CH, Park YK. High-efficiency gasification of low-grade coal by microwave steam plasma. Energ Fuel. 2014;28(7):4402–8.CrossRefGoogle Scholar
  36. Vedrenne I, Herve T, Nikravech M, Amouroux J. C2 + hydrocarbons synthesis from methane in a plasma-spouted bed device. Stud Surf Sci Catal. 1991;61:207–12.CrossRefGoogle Scholar
  37. Vivien C, Wartelle C, Mutel B, Grimblot J. Surface property modification of a polyethylene powder by coupling fluidized bed and far cold remote nitrogen plasma technologies. Surf Interface Anal. 2002;34(1):575–9.CrossRefGoogle Scholar
  38. Wang Q, Cheng Y, Jin Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst. Catal Today. 2009;148(3):275–82.CrossRefGoogle Scholar
  39. Wang TC, Lu N, Li J, Wu Y. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environ Sci Technol. 2011;45(21):9301–7.CrossRefGoogle Scholar
  40. Yan B, Cheng Y, Jin Y. Cross-scale modeling and simulation of coal pyrolysis to acetylene in hydrogen plasma reactors. AIChE J. 2013;59(6):2119–33.CrossRefGoogle Scholar
  41. Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two-phase mixture. J Phys D Appl Phys. 2004;37(24):3373.CrossRefGoogle Scholar
  42. Zhu CW, Zhao GY, Hlavacek V. A d.c. plasma-fluidized bed reactor for the production of calcium carbide. J Mater Sci. 1995;30(9):2412–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations